【题目】已知函数
.
(1)求函数
的图像在
处的切线方程与
的单调区间;
(2)设
是函数
的导函数,试比较
与
的大小.
【答案】(1)
函数的单调递增区间为
,单调递减区间为
.
(2)
.
【解析】
(1)求
,从而求得切线的斜率
,即可求得切线方程,令
及
,分别求得函数
的增、减区间。
(2)把
与
的大小问题转化成:
与
的大小问题来解决,令
,利用导数求出该函数的单调性,从而求出该函数的最大值,即可判断两个数的大小。
解:(1)∵
,∴
,
∴
,
,所以所求切线方程为
,
即
.
令
,解得
,
,解得
,
所以函数的单调递增区间为
,单调递减区间为
.
(2)∵
,
∴
与
的大小关系等价于
与
的大小关系,
令
,则
,
∵
在
上单调递减,且有
,
,
∴
,使
,即有
,
即当
时,
,当
时,
,
所以函数
在
上单调递增,在
上单调递减,
即
,
又由
,可得
,
,
,
∵
,∴
,即
,
∴
,即
.
科目:高中数学 来源: 题型:
【题目】某通信公司为了配合客户的不同需要,现设计A,B两种优惠方案,这两种方案的应付话费y(元)与通话时间x(分钟)之间的关系如图所示(实线部分).(注:图中MN∥CD)
![]()
(1)若通话时间为2小时,则按方案A,B各付话费多少元?
(2)方案B从500分钟以后,每分钟收费多少元?
(3)通话时间在什么范围内,方案B才会比方案A优惠?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年1月22日,国新办发布消息:新型冠状病毒来源于武汉一家海鲜市场非法销售的野生动.专家通过全基因组比对发现此病毒与2003年的非典冠状病毒以及此后的中东呼吸综合征冠状病毒,分别达到70%和40%的序列相似性.这种新型冠状病毒对人们的健康生命带来了严重威胁因此,某生物疫苗研究所加紧对新型冠状病毒疫苗进行实验,并将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:
未感染病毒 | 感染病毒 | 总计 | |
未注射疫苗 | 20 |
|
|
注射疫苗 | 30 |
|
|
总计 | 50 | 50 | 100 |
现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为
.
(1)求
列联表中的数据
,
,
,
的值;
(2)能否有99.9%把握认为注射此种疫苗对预防新型冠状病毒有效?
附:
.
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒
![]()
[来
(Ⅰ)第二小组的频率是多少?样本容量是多少?
(Ⅱ)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
(Ⅲ)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形
垂直于直角梯形
,
,
为
中点,
,
.
![]()
(1)求证:
∥平面
;
(2)线段
上是否存在点
,使
与平面
所成角的正切值为
?若存在,请求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=
x2+10x(万元).当年产量不小于80千件时,C(x)=51x+
-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年开始,直播答题突然就火了,在某场活动中,最终仅有23人平分100万奖金,这23人可以说是“学霸”级的大神.但随着直播答题的发展,其模式的可持续性受到了质疑,某网战随机选取500名网民进行了调查,得到的数据如下表:
男 | 女 | |
认为直播答题模式可持续 | 180 | 140 |
认为直播答题模式不可持续 | 120 | 60 |
(1)根据表格中的数据,用独立性检验的思维方法判断是否有97.5%的把握认为对直播答题模式的态度与性别有关系?
(2)已知在参与调查的500人中,有15%曾参加答题游戏瓜分过奖金,而男性被调查者有12%曾参加游戏瓜分过奖金,求女性被调查者参与游戏瓜分过奖金的概率.
参考公式:![]()
临界值表:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com