精英家教网 > 高中数学 > 题目详情
(2013•浙江模拟)已知直线y=k(x-m)与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,又OD⊥AB于D,若动点D的坐标满足方程x2+y2-4x=0,则m=
4
4
分析:设出D的坐标,求出OD的斜率,利用OD⊥AB于D,动点D的坐标满足方程x2+y2-4x=0,确定x的值,代入
k2(x-m)
x
=-1,化简,即可得到结论.
解答:解:∵D在直线y=k(x-m),∴可设D坐标为(x,k(x-m)),∴OD的斜率k'=
k(x-m)
x

∵OD⊥AB,AB的斜率为k,
∴有k•k'=
k2(x-m)
x
=-1,即k(x-m)=-
x
k

又因为动点D的坐标满足x2+y2-4x=0,即x2+[k(x-m)]2-4x=0,
将k(x-m)=-
x
k
代入可解得x=
4k2
k2+1

代入到
k2(x-m)
x
=-1,化简得4k2-mk2+4-m=0,即(4-m)•(k2+1)=0,
由于k2+1不可能等于0,∴只有4-m=0,∴m=4.
故答案为4.
点评:本题考查直线与抛物线的位置关系,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江模拟)函数f(x)=Asin(ωx+φ)(A>0,ω>),|φ|<
π
2
)的部分图象如图示,则将y=f(x)的图象向右平移
π
6
个单位后,得到的图象解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知C=
π3

(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;
(Ⅱ)若c=2,sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若|
AB
|=a,|
AD
|=b,则
AC
BD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知sin(
π
4
-x)=
3
4
,且x∈(-
π
2
,-
π
4
)
,则cos2x的值为
-
3
7
8
-
3
7
8

查看答案和解析>>

同步练习册答案