精英家教网 > 高中数学 > 题目详情
已知函数(a>0,a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)当x∈(n,a-2)时,函数f(x)的值域是(1,+∞),求实数a与n的值;
(3)令函数g(x)=-ax2+8(x-1)af(x)-5,试问是否存在实数a,使得对任意的实数x∈(1,2],-5≤g(x)≤5恒成立?若存在,求出实数a的取值范围;若不存在,说明理由.
【答案】分析:(1)由函数(a>0,a≠1,m≠1)是奇函数得f(-x)+f(x)=0对定义域中的任意实数x均成立,代入可求m
(2)因为函数f(x)的定义域为(1,+∞)∪(-∞,-1),需要考虑(n,a-2)与定义域的关系,故分类讨论①当n<a-2≤-1时,0<a<1,②当1≤n<a-2时,a>3,分别求解函数的值域即可
(3)由题意可得g(x)=-ax2+8x+3,假设存在实数a,使得对任意的实数x∈(1,2],-5≤g(x)≤5恒成立,则有 对任意的实数x∈(1,2]恒成立,即 对任意的实数x∈(1,2]恒成立,结合二次函数的性质可求
解答:解:(1)由函数(a>0,a≠1,m≠1)是奇函数
得f(-x)+f(x)=0对定义域中的任意实数x均成立.(2分)

即     
即m2x2-1=x2-1对定义域中的任意实数x均成立.
∴m2=1即m=1(舍去)或m=-1.
∴m=-1.(6分)
(2)因为函数f(x)的定义域为(1,+∞)∪(-∞,-1),(7分)
∴①当n<a-2≤-1时,0<a<1,
∴f(x)在区间(n,a-2)上为增函数,
要使值域为(1,+∞),则(无解);
②当1≤n<a-2时,a>3,
∴f(x)在区间(n,a-2)上为减函数,
要使f(x)的值域为(1,+∞),则
,n=1.(12分)
(3)g(x)=-ax2+8(x-1)af(x)-5=-ax2+8x+3,(13分)
假设存在实数a,使得对任意的实数x∈(1,2],-5≤g(x)≤5恒成立,
则有 对任意的实数x∈(1,2]恒成立,
即   对任意的实数x∈(1,2]恒成立,
,则有对任意的实数恒成立,
因为函数8(t2+t)在上递增,所以函数8(t2+t)的最小值为6,
所以 a≤6;
因为函数8t-2t2上递增,所以函数8t-2t2<6,
所以a≥6.
综上,a=6
所以,存在a=6使得对任意的实数x∈(1,2],-5≤g(x)≤5恒成立.(18分)
点评:本题主要考查了奇函数的定义的应用,函数的值域的求解,体现了分类讨论思想的应用,解决本题(3)的关键在于“转化”,先将转化为恒成立问题,再以将问题转化为二次函数问题,最终得以解决
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知函数y=f(x)(定义域为D,值域为A)有反函数y=f--1(x),则方程f(x)=0有解x=a,且f(x)>x(x∈D)的充要条件是y=f--1(x)满足
f--1(0)=a,且f--1(x)<x(x∈A)/y=f--1(x)的图象在直线y=x的下方,且与y轴的交点为(0,a)…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式(a>0且a≠1).
(1)求f(x)的表达式,写出其定义域,并判断奇偶性;
(2)求f-1(x)的表达式,并指出其定义域;
(3)判断f-1(x)单调性并证明.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省潍坊市三县市高一(上)期末数学试卷(解析版) 题型:填空题

已知函数(a>0,a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则b=   

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本题满分14分)已知函数其中a>0,且a≠1,

(1)求函数的定义域;

(2)当0<a<1时,解关于x的不等式

(3)当a>1,且x∈[0,1)时,总有恒成立,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年陕西省高一上学期期中考试数学试卷 题型:解答题

(12分) 已知函数=loga(a>0且a≠1)是奇函数

(1)求,(

(2)讨论在(1,+∞)上的单调性,并予以证明

 

查看答案和解析>>

同步练习册答案