(本题满分13分)
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线
:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线
过定点(Q点除外),并求出该定点的坐标.
(Ⅰ)
.(Ⅱ)(i)
.(ii)直线过定点
.
【解析】
试题分析:(Ⅰ)设点
,
,则由题意知
.
由
,
,且
,
得
.
所以
于是![]()
又
,所以
.
所以,点M的轨迹C的方程为
.……………………(3分)
(Ⅱ)设
,
.
联立![]()
得
.
所以,
,即
.
①
且
………………………………(5分)
(i)依题意,
,即
.
.
,即
.
,
,解得
.
将
代入①,得
.
所以,
的取值范围是
.
……………………(8分)
(ii)曲线
与
轴正半轴的交点为
.
依题意,
, 即
.
于是
.
![]()
,即
,
.
化简,得
.
解得,
或
,且均满足
.
当
时,直线
的方程为
,直线过定点
(舍去);
当
时,直线
的方程为
,直线过定点
.
所以,直线过定点
.
………………………………(13分)
考点:本题主要考查轨迹方程的求法,直线与椭圆的位置关系。
点评:求曲线的轨迹方程是解析几何的基本问题,本题利用相关点法求轨迹方程,相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.本题较难。
科目:高中数学 来源:2012届浙江省宁波万里国际学校高三上期中理科数学试卷(解析版) 题型:解答题
(本题满分13分)
的三个内角
依次成等差数列.
(Ⅰ)若
,试判断
的形状;
(Ⅱ)若
为钝角三角形,且
,求![]()
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市朝阳区高三上学期期末考试理科数学 题型:解答题
(本题满分13分)
在锐角
中,
,
,
分别为内角
,
,
所对的边,且满足
.
(Ⅰ)求角
的大小;
(Ⅱ)若
,且
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(一级学校) 题型:解答题
(本题满分13分)
如图,在五面体ABCDEF中,FA
平面ABCD,AD//BC//FE,AB
AD,AF=AB=BC=FE=
AD.
(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为
?若存在,试确定点M的位置;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com