精英家教网 > 高中数学 > 题目详情
椭圆的离心率为
12
,一个焦点为F(3,0)对应准线为x-1=0,则这个椭圆方程是
 
分析:由椭圆的离心率为
1
2
,知a=2c,设中心是(m,0),准线x=1,根据椭圆的第二定义可求.
解答:解:e=
1
2
,a=2c
设中心是(m,0),准线x=1,
因为椭圆中焦点比准线离中心更近,所以中心在(3,0)右边,所以m>3,则c=焦点到中心距离=m-3
准线到中心距离=
a2
c
=m-1
,所以
a2
c
-c=2
,所以
4c2
c
-c=2
,∴c=
2
3
,∴a=
4
3
b2=
4
3
,m=c+3=
11
3

所以椭圆3x2+4y2-22x+35=0,
故答案为:3x2+4y2-22x+35=0.
点评:本题主要考查椭圆的第二定义,应注意椭圆的中心不在坐标原点,其方程不是标准方程,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,F是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为
1
2
.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M的半径为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点A的直线l与圆M交于P、Q两点,且
MP
MQ
=-2
求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(
3
2
,1)
在椭圆Q:
y2
a2
+
x2
b2
=1(a>b>0)
上,且该椭圆的离心率为
1
2

(1)求椭圆Q的方程;
(2)若直线l与直线AB:y=-4的夹角的正切值为2,且椭圆Q上的动点M到直线l的距离的最小值为
5
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Ω的离心率为
1
2
,它的一个焦点和抛物线y2=-4x的焦点重合.
(1)求椭圆Ω的方程;
(2)若椭圆
x2    
a2
+
 y2   
b2
=1(a>b>0)
上过点(x0,y0)的切线方程为
 x0x   
a2
+
y0y    
b2
=1

①过直线l:x=4上点M引椭圆Ω的两条切线,切点分别为A,B,求证:直线AB恒过定点C;
②是否存在实数λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两点,且OA⊥OB(其中O为坐标原点).
(1)若椭圆的离心率为
1
2
,求椭圆的方程;
(2)求证:不论a,b如何变化,椭圆恒过第一象限内的一个定点P,并求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,点F是椭圆W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A、B分别是椭圆的右顶点与上顶点,椭圆的离心率为
1
2
,三角形ABF的面积为
3
3
2

(Ⅰ)求椭圆W的方程;
(Ⅱ)对于x轴上的点P(t,0),椭圆W上存在点Q,使得PQ⊥AQ,求实数t的取值范围;
(Ⅲ)直线l:y=kx+m(k≠0)与椭圆W交于不同的两点M、N (M、N异于椭圆的左右顶点),若以MN为直径的圆过椭圆W的右顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案