精英家教网 > 高中数学 > 题目详情
已知函数f(x)在R上可导,则
lim
△x→0
f(x+3△x)-f(x-△x)
△x
等于(  )
分析:可将
lim
△x→0
f(x+3△x)-f(x-△x)
△x
变形成4
lim
△x→0
f(x+3△x)-f(x-△x)
(x+3△x)-(x-△x)
然后再利用导数的定义即可得解.
解答:解:∵函数f(x)在R上可导
lim
△x→0
f(x+3△x)-f(x-△x)
△x
=4
lim
△x→0
f(x+3△x)-f(x-△x)
(x+3△x)-(x-△x)
=4f(x)
故选A
点评:本题主要考察了导数的概念,属常考题型,较难.解题的关键是透彻理解导数的定义f(x)=
lim
△x→0
f(x+△x)-f(x)
△x
从而将
lim
△x→0
f(x+3△x)-f(x-△x)
△x
变形成4
lim
△x→0
f(x+3△x)-f(x-△x)
(x+3△x)-(x-△x)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足2f(x)+f(1-x)=3x2-2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上有定义,对任意实数a>0和任意实数x都有f(ax)=a﹒f(x).
(1)证明:f(0)=0
(2)若f(1)=1,求g(x)=
1f(x)
+f(x).(x>0)
的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上可导,函数F(x)=f(x2-4)+f(4-x2),则F′(2)=
 

查看答案和解析>>

同步练习册答案