精英家教网 > 高中数学 > 题目详情
直线l过点P(-2,3)且与x轴、y轴分别交与A、B两点,若P恰为线段AB的中点,求直线l的方程.
分析:设出A、B两点的坐标,由线段的中点公式求出A、B两点的坐标,用两点式求直线的方程,并化为一般式.
解答:解:设A(x,0)、B(0,y),由中点坐标公式得:
x+0
2
=-2,
0+y
2
=3

解得:x=-4,y=6,由直线l过点(-2,3)、(-4,0),
∴直线l的方程为:
y-3
0-3
=
x+2
-4+2

即3x-2y+12=0.
点评:本题考查线段的中点公式的应用,用两点式求直线的方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l过点P(2,3),且在两坐标轴上的截距相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

斜率为k的直线l过点P(
2
,0)且与圆C:x2+y2=1存在公共点,则k2
4
9
的概率为(  )
A、
2
3
B、
1
2
C、
2
2
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点P(-2,1).
(1)当直线l与点B(-5,4)、C(3,2)的距离相等时,求直线l的方程;
(2)当直线l与x轴、y轴围成的三角形的面积为
12
时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求经过两点(2,0),(0,5)的直线方程.
(2)直线L过点P(2,3),且与两坐标轴正半轴围成的三角形面积为12,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点P(2,1),且分别与x,y轴的正半轴于A,B两点,O为原点.
(1)求△AOB面积最小值时l的方程;
(2)|PA|•|PB|取最小值时l的方程.

查看答案和解析>>

同步练习册答案