精英家教网 > 高中数学 > 题目详情
已知直线l1:x-2y-1=0,直线l2:ax-by-1=0,其中a,b{1,2,3,4,5,6}.则直线l1∩l2=∅的概率为
 
分析:这是一道古典概型问题,总的事件数是6×6个,而满足直线l1∩l2=∅的是指既不相交又不重合的情况,即a=2,b=4;a=3,b=6.
解答:解:∵a,b{1,2,3,4,5,6},
∴a,b各有6种取法,
∴总事件数是36,
而满足条件的只有两组数a=2,b=4;a=3,b=6.
∴P=
2
36
=
1
18

故答案为:
1
18
点评:用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏.解决了求古典概型中基本事件总数这一难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)把一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b.已知直线l1:x+2y=2,直线l2:ax+by=4,则两直线l1、l2平行的概率为(  )
A、
1
36
B、
2
36
C、
3
36
D、
6
36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+ay+1=0与直线l2:x-2y+2=0垂直,则a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.则直线l1∩l2=∅的概率为为
1
12
1
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:y=x+2,若直线l2过点P(-2,1),且l1到l2的角为45°,则直线l2的方程是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:y=x+2,直线l2过点P(-2,1)且l2到l1的角为45°,则l2的方程是(    )

A.y=x-1                                       B.y=x+

C.y=-3x+7                                   D.y=3x+7

查看答案和解析>>

同步练习册答案