精英家教网 > 高中数学 > 题目详情

【题目】已知四边形是矩形,平面,点在线段上(不为端点),且满足,其中.

1)若,求直线与平面所成的角的大小;

2)是否存在,使的公垂线,即同时垂直?说明理由.

【答案】(1)(2)不存在满足条件,理由见详解.

【解析】

(1)建立空间直角坐标系,根据直线的方向向量与平面法向量的夹角余弦值得到线面角的正弦值,从而计算出线面角的大小;

(2)假设存在满足,根据表示出的坐标,即可求解出的坐标表示,根据求解出的值.

(1) 建立空间直角坐标系如图所示:

时,中点,因为

所以,所以

取平面一个法向量,设直线与平面所成的角的大小为

所以,所以,所以

所以直线与平面所成的角的大小为

(2)设存在满足条件,因为

所以,所以

又因为,当的公垂线时

所以,所以无解即假设不成立,所以不存在满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市移动公司为了提高服务质量,决定对使用A,B两种套餐的集团用户进行调查,准备从本市个人数超过1000人的大集团和8个人数低于200人的小集团中随机抽取若干个集团进行调查,若一次抽取2个集团,全是小集团的概率为

求n的值;

若取出的2个集团是同一类集团,求全为大集团的概率;

若一次抽取4个集团,假设取出小集团的个数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为8的正方形ABCD中,MBC的中点,NAD边上的一点,且DN3NA,若对于常数m,在正方形ABCD的边上恰有6个不同的点P,使,则实数m的取值范围是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的方程为,集合,若对于任意的,都存在,使得成立,则称曲线曲线.下列方程所表示的曲线中,曲线的有__________(写出所有曲线的序号)

;②;③;④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点PAD的中点,点Q上的动点,给出下列说法:

可能与平面平行;

BC所成的最大角为

PQ一定垂直;

所成的最大角的正切值为

其中正确的有______写出所有正确命题的序号

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1,2)是函数的图象上一点,数列的前项和是.

(1)求数列的通项公式;

(2)若,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数上有两个不同的零点,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, 边的中点,将沿折起,使平面平面,连接得到如图所示的几何体.

(1)求证; 平面

(2)若二面角的平面角的正切值为求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是( )

A. 先把高二年级的1000多学生编号为1到1000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为……的学生,这样的抽样方法是系统抽样法

B. 正态总体在区间上取值的概率相等

C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1

D. 若一组数据1、、2、3的平均数是2,则该组数据的众数和中位数均是2

查看答案和解析>>

同步练习册答案