精英家教网 > 高中数学 > 题目详情

证明:a,b,c为一个三角形三边,则也可以作为一个三角形的三边.

答案:略
解析:

证明:不妨设abc,则,这时只需证明

∴原命题得证.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二次方程ax2-
2
bx+c=0,其中a、b、c是一钝角三角形的三边,且以b为最长.
①证明方程有两个不等实根;
②证明两个实根α,β都是正数;
③若a=c,试求|α-β|的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知a,b,c为△ABC的内角A,B,C的对边,满足
sinB+sinC
sinA
=
2-cosB-cosC
cosA
,函数f(x)=sinωx(ω>0)在区间[0,
π
3
]
上单调递增,在区间[
π
3
3
]
上单调递减.
(Ⅰ)证明:b+c=2a;
(Ⅱ)若f(
π
9
)=cosA
,证明:△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
A选修4-1:几何证明选讲
如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.
B选修4-2:矩阵与变换
已知矩阵A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C选修4-3:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
a
3cos2θ+4sin2θ
,焦距为2,求实数a的值.
D选修4-4:不等式选讲
已知函数f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c为实数)的最小值为m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c为三角形的三边,
(1)我们知道,△ABC为直角三角形的充要条件是存在一条边的平方等于另两边的平方和.类似地,试用三边的关系分别给出△ABC为锐角三角形的充要条件以及△ABC为钝角三角形的充要条件;(不需证明)
(2)由(1)知,若a2+b2=c2,则△ABC为直角三角形.试探究当三边a,b,c满足an+bn=cn(n∈N,n>2)时三角形的形状,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:
①对任意的实数x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y);
②f(1)=2;
③f(x)在[0,1]上为增函数.
(Ⅰ)求f(0)及f(-1)的值;
(Ⅱ)判断函数f(x)的奇偶性,并证明;
(Ⅲ)(说明:请在(ⅰ)、(ⅱ)问中选择一问解答即可.)
(ⅰ)设a,b,c为周长不超过2的三角形三边的长,求证:f(a),f(b),f(c)也是某个三角形三边的长;
(ⅱ)解不等式f(x)>1.

查看答案和解析>>

同步练习册答案