精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c,点P(1,f(1))在函数y=f(x)的图象上,过P点的切线方程为y=3x+1
(1)若y=f(x)在x=-2时有极值,求f(x)的解析式;
(2)若函数y=f(x)在区间[-2,1]上单调递增,求实数b的取值范围.
分析:(1)由于函数f(x)=x3+ax2+bx+c在点P(1,f(1))处的切线方程为y=3x+1,所以f(1)=4,f′(1)=3,又因为y=f(x)在x=-2时有极值,所以f′(-2)=0,列三个方程解之即可
(2)由于函数f(x)=x3+ax2+bx+c在点P(1,f(1))处的切线方程为y=3x+1,所以 f′(1)=3,所以2a=-b,欲使函数y=f(x)在区间[-2,1]上单调递增,只需f′(x)=3x2-bx+b≥0在区间[-2,1]上恒成立,转化为b≥
3x2
x-1
在区间[-2,1]上恒成立,利用函数性质求此函数的最大值即可
解答:解:(1)∵f′(x)=3x2+2ax+b
依题意
f′(1)=3
f(1)=4
f′(-2)=0

3+2a+b=3
1+a+b+c=4
14-4a+b=0

解得a=2,b=-4,c=5
∴f(x)=x3+2x2-4x+5
(2)∵函数f(x)=x3+ax2+bx+c在点P(1,f(1))处的切线方程为y=3x+1,
∴f′(1)=3,∴2a=-b
∴f′(x)=3x2-bx+b
依题意欲使函数y=f(x)在区间[-2,1]上单调递增,只需f′(x)=3x2-bx+b≥0在区间[-2,1]上恒成立
即b≥
3x2
x-1
在区间[-2,1]上恒成立
3x2
x-1
≤0
∴b≥0时,函数y=f(x)在区间[-2,1]上单调递增
点评:本题考察了导数的几何意义,利用导数求函数极值,利用导数解决已知函数单调性求参数范围问题的方法,考查了转化化归的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案