精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知函数.

(l)求的单调区间和极值;

(2)若对任意恒成立,求实数m的最大值.

 

【答案】

(1)单增区间,单减区间,极小值;(2).

【解析】

试题分析:(1)先对函数求导得到,然后分别求出以及时的的取值集合,这两个取值集合分别对应函数的单调增区间和单调减区间,根据函数的单调性可知函数处取得极小值,求出即可;(2)根据,先将式子化简得,,构造函数,利用函数的单调性以及导数的关系,先求出函数的零点,再讨论函数在零点所分区间上的单调性,据此判断函数在点取得最小值,这个最小值即是的最大值.

试题解析:(1) ∵

时,有 ,∴函数上递增,          3分

时,有 ,∴函数上递减,          5分

处取得极小值,极小值为.         6分

(2)

 ,

 ,              8分

 , 

,        10分

,解得 (舍),

时,,函数上递减,

时,,函数上递增,             12分

,                                                  13分

的最大值为.                                           14分

考点:1.函数求导;2.函数的单调性与导数的关系;3.不等式恒成立问题;4.利用导数研究函数的极值;5.解不等式

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案