精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,A点坐标为(1,1),B点与A点关于坐标原点对称,过动点P作x轴的垂线,垂足为C点,而点D满足,且有
(1)求点D的轨迹方程;
(2)求△ABD面积的最大值;
(3)斜率为k的直线l被(1)中轨迹所截弦的中点为M,若∠AMB为直角,求k的取值范围.
【答案】分析:(1)根据,求得P(x',y')满足的方程:(x')2+(y')2=4…(*).再由,可得x'=2x-1,y'=2y,代入(*)式得(2x-1)2+(2y)2=4,化简即得点D的轨迹方程.
(2)根据D点满足的方程,设D(+cosα,sinα),用点到直线的距离公式求得D到AB距离的最大值为1+,由此即可得到△ABD面积的最大值;
(3)∠AMB为直角,则点M在以AB为直径的圆上,从而得到满足条件的M在位于圆N:(x-2+y2=1在x2+y2=2内的劣弧上,求出界点处的切线斜率,再观察直线l的斜率的变化,可得斜率k的取值范围.
解答:解:(1)设P(x',y'),得=(1-x',1-y'),=(-1-x',-1-y'),
所以=(1-x')(-1-x')+(1-y')(-1-y')=(x')2+(y')2-2

∴点P的轨迹方程为(x')2+(y')2-2=2,即(x')2+(y')2=4…(*)
再设D(x',y'),由得D为PC的中点
∴x=,y'=
可得x'=2x-1,y'=2y.代入(*)式得(2x-1)2+(2y)2=4
化简得点D的轨迹方程:(x-2+y2=1
(2)设点D坐标为(+cosα,sinα),
求得直线AB的方程为x-y=0,得D到直线AB的距离为
d==
时,d的最大值为1+
因此△ABD面积的最大值为×AB×(1+)=1+
(3)若∠AMB为直角,则点M在以AB为直径的圆上
求得以AB为直径的圆方程为x2+y2=2,该圆与D的轨迹交于点M1)和M2,-
满足条件的点M位于圆N:(x-2+y2=1在x2+y2=2内的劣弧上
==,得此时切线l的斜率k1==-
==-,得此时切线l的斜率k2==
∴运动点M,观察斜率变化,可得直线l的斜率为k∈(-∞,-)∪(,+∞)
点评:本题以向量运算为载体,求动点的轨迹方程并求动直线斜率k的取值范围,着重考查了向量的数量积、直线与圆的位置关系和动点轨迹方程求法等知识,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案