【题目】在平面直角坐标系
中,直线
的参数方程为:
(
为参数,
),以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)当
时,写出直线
的普通方程和曲线
的直角坐标方程;
(2)若点
,设曲线
与直线
交于点
,求
的最小值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左顶点为
,上顶点为
,右焦点为
,离心率为
,
的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
为
轴上的两个动点,且
,直线
和
分别与椭圆
交于
两点.
(ⅰ)求
的面积最小值;
(ⅱ)证明:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:
及其上一点A(2,4)
![]()
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得
,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的右焦点为
,点
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴的交点除外),直线
交椭圆于另一个点
.
![]()
(1)当直线
经过椭圆的右焦点
时,求
的面积;
(2)①记直线
的斜率分别为
,求证:
为定值;
②求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在[﹣1,1]上的奇函数f(x)满足当﹣1≤x<0时,f(x)=
.
(1)求f(x)在[﹣1,1]上的解析式;
(2)当x∈(0,1]时,函数g(x)=
﹣m有零点,试求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好在抛物线
的准线上.
(Ⅰ)求椭圆
的标准方程.
(Ⅱ)点
,
在椭圆上,
,
是椭圆上位于直线
两侧的动点.
(i)若直线
的斜率为
,求四边形
面积的最大值.
(ii)当
,
运动时,满足
,试问直线
的斜率是否为定值,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com