精英家教网 > 高中数学 > 题目详情
设点P在直线AB上并且AP=λPB(λ≠-1),O为空间任一点.

求证:=.

证明:∵=-,=-,

∴由,得-=λ(-)=λ(1+λ)=.

∵λ≠-1,∴=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AD=2,E是棱PC的中点.
(Ⅰ)设点G在棱AB上,当点G在何处时,可使直线GE⊥平面PCD,并证明你的结论;
(Ⅱ)求直线AC与平面ADE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定直线l:x=1和定点M(t,0)(t∈R),动点P到M的距离等于点P到直线l距离的2倍.
(1)求动点P的轨迹方程,并讨论它表示什么曲线;
(2)当t=4时,设点P的轨迹为曲线C,过点M作倾斜角为θ(θ>0)的直线交曲线C于A、B两点,直线l与x轴交于点N.若点N恰好落在以线段AB为直径的圆上,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区二模)已知点E,F的坐标分别是(-2,0)、(2,0),直线EP,FP相交于点P,且它们的斜率之积为-
1
4

(1)求证:点P的轨迹在椭圆C:
x2
4
+y2=1
上;
(2)设过原点O的直线AB交(1)题中的椭圆C于点A、B,定点M的坐标为(1,
1
2
)
,试求△MAB面积的最大值,并求此时直线AB的斜率kAB
(3)某同学由(2)题结论为特例作推广,得到如下猜想:
设点M(a,b)(ab≠0)为椭圆C:
x2
4
+y2=1
内一点,过椭圆C中心的直线AB与椭圆分别交于A、B两点.则当且仅当kOM=-kAB时,△MAB的面积取得最大值.
问:此猜想是否正确?若正确,试证明之;若不正确,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AD=2,E是棱PC的中点.
(Ⅰ)设点G在棱AB上,当点G在何处时,可使直线GE⊥平面PCD,并证明你的结论;
(Ⅱ)求直线AC与平面ADE所成角的大小.

查看答案和解析>>

科目:高中数学 来源:2010年福建省莆田市高三质量检查数学试卷(理科)(解析版) 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AD=2,E是棱PC的中点.
(Ⅰ)设点G在棱AB上,当点G在何处时,可使直线GE⊥平面PCD,并证明你的结论;
(Ⅱ)求直线AC与平面ADE所成角的大小.

查看答案和解析>>

同步练习册答案