如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.
![]()
(Ⅰ)求证:直线BD⊥平面PAC;
(Ⅱ)求直线
与平面
所成角的正切值;
(Ⅲ)已知M在线段PC上,且BM=DM=
,CM=3,求二面角
的余弦值.
![]()
(Ⅰ)证明:因为四边形ABCD是菱形, 所以AC⊥BD. ………………1分
又因为PA⊥平面ABCD,
平面ABCD, 所以PA⊥BD, …3分
又因为
,所以BD⊥平面PAC. ………………4分
(Ⅱ)![]()
(Ⅲ)![]()
【解析】(I)由条件易知AC⊥BD,然后再证PA⊥BD即可.
(II)本小题关键是找或做出PB与平面PAD所成的角,过B作
,连结PE,
因为PA⊥平面ABCD,
平面ABCD, 所以PA⊥BE,又因为
,
,所以BE⊥平面PAD.所以
是直线
与平面
所成角.过B作
,连结PE,
因为PA⊥平面ABCD,
平面ABCD, 所以PA⊥BE
又因为
,
,所以BE⊥平面PAD. ………………5分
所以
是直线
与平面
所成角.
………………6分
在
△BEP中,
,
,
………………7分
所以
.
所以
是直线
与平面
所成角的正切值
.
………………8分
(Ⅲ)设F是MC的中点,连结BF,DF,
因为BM=BC,△BMC为等腰△,
所以BF⊥MC 同理DF⊥MC ………………9分
所以
为二面角
的平面角.………10分
在△
中,
………………11分
由余弦定理得
.
所以二面角
的余弦值为
.………………12分
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com