【题目】选修4-5:不等式选讲
已知函数
.
(Ⅰ)若
,解不等式
;
(Ⅱ)当
时,函数
的最小值为
,求实数
的值.
【答案】(Ⅰ)
(Ⅱ) ![]()
【解析】
(Ⅰ)a=-2时,
,f(x)的两个零点分别为-1和1,通过零点分段法分别讨论
,去绝对值解不等式,最后取并集即可;
(Ⅱ)法一:
时,
,化简f(x)为分段函数,根据函数的单调性求出f(x)在
处取最小值3,进而求出a值。法二:先放缩,再由绝对值三角不等式求出f(x)最小值,进而求a。
(Ⅰ)
时,不等式为![]()
①当
时,不等式化为
,
,此时 ![]()
②当
时,不等式化为
,![]()
③当
时,不等式化为
,
,此时![]()
综上所述,不等式的解集为![]()
(Ⅱ)法一:函数f(x)=|2x-a|+|x-1|,当a<2,即
时,
所以f(x)min=f(
)=-
+1=3,得a=-4<2(符合题意),故a=-4.
法二: ![]()
所以
,又
,所以
.
科目:高中数学 来源: 题型:
【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是( )
![]()
A. 甲的极差是29 B. 甲的中位数是24
C. 甲罚球命中率比乙高 D. 乙的众数是21
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
上动点
与定点
的距离和它到定直线
的距离的比是常数
,若过
的动直线
与曲线
相交于
两点
(1)说明曲线
的形状,并写出其标准方程;
(2)是否存在与点
不同的定点
,使得
恒成立?若存在,求出点
的坐标;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是( )
![]()
A. 这15天日平均温度的极差为![]()
B. 连续三天日平均温度的方差最大的是7日,8日,9日三天
C. 由折线图能预测16日温度要低于![]()
D. 由折线图能预测本月温度小于
的天数少于温度大于
的天数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆
截直线
所得的线段的长度为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,点
是椭圆
上的点,
是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),以直角坐标系的原点
为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
的极坐标方程;
(2)设曲线
的极坐标方程为
,曲线
的极坐标方程为
,求三条曲线
,
,
所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,DC⊥平面ABC,
,
,
,P、Q分别为AE,AB的中点.
![]()
(1)证明:
平面
.
(2)求异面直线
与
所成角的余弦值;
(3)求平面
与平面
所成锐二面角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
两点分别在
轴和
轴上运动,且
,若动点![]()
满足
,动点
的轨迹为
.
(1)求
的方程;
(2)过点
作动直线
的平行线交轨迹
于
两点,则
是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的方程为
,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过动点
的直线交
轴的负半轴于点
,交C于点
(
在第一象限),且
是线段
的中点,过点
作x轴的垂线交C于另一点
,延长线
交C于点
.
(i)设直线
,
的斜率分别为
,
,证明:
;
(ii)求直线
的斜率的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com