精英家教网 > 高中数学 > 题目详情
函数y=asinx-bcosx(ab≠0)的图象的一条对称轴为x=
π
4
,则以
a
=(a,b)
为方向向量的直线的倾斜角为
 
分析:由函数y=asinx-bcosx(ab≠0)的图象的一条对称轴为x=
π
4
,可得x=0与x=
π
2
时的函数值应相等,进而可求出a,b的关系,进而求出以
a
=(a,b)
为方向向量的直线的斜率,进而得到以
a
=(a,b)
为方向向量的直线的倾斜角.
解答:解:∵y=asinx-bcosx的图象关于直线x=
π
4
对称,
∴x=0与x=
π
2
时的函数值应相等,即asin0-bcos0=asin
π
2
-bcos
π
2
,则-b=a,
a
=(a,b)
为方向向量的直线的方程为ax-by+c=0
其斜率为:
a
b
=-1,
故其倾斜角为
3
4
π

故答案为:
3
4
π
点评:本题考查的知识点是函数的对称性,特殊角的三角函数值,直线的方向向量,直线的倾斜角与斜率,技巧性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x=
π
6
是函数y=asinx-bcosx图象的一条对称轴,则函数y=bsinx-acosx图象的一条对称轴方程是(  )
A、x=
π
6
B、x=
π
3
C、x=
π
2
D、x=
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=asinx+2bcosx图象的一条对称轴方程是x=
π
4
,则直线ax+by+1=0和直线x+y+2=0的夹角的正切值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知当x=
π
6
时,函数y=sinx+acosx取最大值,则函数y=asinx-cosx图象的一条对称轴为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=asinx+
1
3
sin3x在x=
π
3
处有极值,则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点;又函数y=asinx+3bcosx图象的一条对称轴的方程是x=
π
6
.(1)求椭圆C的离心率e与直线AB的方程;(2)对于任意一点M∈C,试证:总存在角θ(θ∈R)使等式
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

同步练习册答案