【题目】试找出一个求有限数列
中的最大数的算法.
【答案】见解析
【解析】
将
与
进行比较,将其中较大的数记作b,再依次判断每个数与
的大小关系得到算法.
第一步:将
与
进行比较,将其中较大的数暂时先记作b;
第二步:将b与
进行比较,将其中较大的数暂时先记作b;
第三步:将b与
进行比较,将其中较大的数暂时先记作b;
……
第n步:将b与
进行比较,将其中较大的数记作b;
(执行完每一步后,b的值就是前n个数中的最大数)
步:输出b,b的值即为所求得最大值.
说明:上述算法的
步中,每一步都要与上一步中得到的最大数b进行比较,得出新的最大数b;b可以取不同的值,b就称之为变量在第一步到第
步的算法过程中,都把比较后的较大数记作b,即把值赋予了b,这个过程就是赋值的过程,这个过程有两个功能:第一,可以不断对b的值进行改变,即把数值放入b中;第二,b的值每变化一次都是为下一步的比较服务.
科目:高中数学 来源: 题型:
【题目】p:关于x的方程
无解,q:
(
)
(1)若
时,“
”为真命题,“
”为假命题,求实数a的取值范围.
(2)当命题“若p,则q”为真命题,“若q,则p”为假命题时,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若等比数列
的前n项和为
,求实数a的值;
(2)对于非常数数列
有下面的结论:若数列
为等比数列,则该数列的前n项和为
(
为常数).写出它的逆命题并判断真假,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考】已知函数
(其中
且
为常数,
为自然对数的底数,
).
(Ⅰ)若函数
的极值点只有一个,求实数
的取值范围;
(Ⅱ)当
时,若
(其中
)恒成立,求
的最小值
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合X是实数R的子集,如果点
满足:对任意
,都存在
,使得
,那么称
为集合X的聚点.集合①
;②R除去
;③
;④Z其中以0为聚点的集合有( ).
A.②③B.①④C.①③D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有
的男生喜欢网络课程,有
的女生不喜欢网络课程,且有
的把握但没有
的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )
附:
,其中
.
|
|
|
|
|
k |
|
|
|
|
A.130B.190C.240D.250
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?
(均精确到0.001)
附注:①参考数据:
,
,
②参考公式:相关系数
,
回归方程
中斜率和截距的最小二乘估计公式分别为:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com