精英家教网 > 高中数学 > 题目详情

>0时,函数的最小值为(   )

A.2                B.4                C.6            D.8

 

【答案】

B

【解析】当>0时,函数,选B

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省常州市部分学校高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省宿迁市泗阳中学高三第一次调研数学试卷(普通班)(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省天门市岳口高中高考专项复习:向量(文科)(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

同步练习册答案