精英家教网 > 高中数学 > 题目详情
x是实数,则下列不等式恒成立的是( )
A.x2+4>4
B.
C.lg(x2+1)>lg(2x)
D.x2+1>
【答案】分析:由于 x2-4x+4=(x-2)2≥0,≤1,lg(x2+1)≥lg(2x),故A、B、C不恒成立.由于x2-x+1=+>0,故 x2+1>x 恒成立,由此得出结论.
解答:解:由于 x2-4x+4=(x-2)2≥0,故A不恒成立.
由于 ≤1,故B不恒成立.
由于 x2+1≥2x,故 lg(x2+1)≥lg(2x),故C不恒成立.
由于x2-x+1=+>0,故 x2+1>x 恒成立,
故选D.
点评:本题主要考查不等式与不等关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1+|x|
 (x∈R)
时,则下列结论不正确的是(  )
A、?x∈R,等式f(-x)+f(x)=0恒成立
B、?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
C、?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
D、?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x1+|x|
 (x∈R)
时,则下列结论不正确是
 

(1)?x∈R,等式f(-x)+f(x)=0恒成立;
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2);
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

若是实数x满足log2009x=2009-x,则下列不等关系正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若是实数x满足log2009x=2009-x,则下列不等关系正确的是


  1. A.
    x2>x>1
  2. B.
    x2>1>x
  3. C.
    1>x>x2
  4. D.
    x>1>x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
x
1+|x|
 (x∈R)
时,则下列结论不正确的是(  )
A.?x∈R,等式f(-x)+f(x)=0恒成立
B.?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
C.?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
D.?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点

查看答案和解析>>

同步练习册答案