精英家教网 > 高中数学 > 题目详情
设x1,x2是关于x的方程=0的两个不相等的实数根,那么过两点的直线与圆x2+y2=2的位置关系是( )
A.相切
B.相离
C.相交
D.随m的变化而变化
【答案】分析:由x1、x2是关于x的方程的两个不相等的实数根,利用韦达定理表示出两根之和与两根之积,再由A和B的坐标,利用直线斜率的公式求出直线AB的斜率,利用平方差公式化简约分后得到结果,将两根之和代入表示出斜率,由A和斜率写出直线AB的方程,利用点到直线的距离公式表示出圆心到直线AB的距离d,将表示出的两根之和与两根之积代入,整理后得到d小于r,可得出直线AB与圆相交.
解答:解:∵x1,x2是关于x的方程=0的两个不相等的实数根,
∴x1+x2=-m,x1x2=>0,
又A(x1,x12),B(x2,x22),
∴直线AB的斜率k==x1+x2=-m,
∴直线AB的方程为y-x12=-m(x-x1),即mx+y-mx1-x12=0,
由圆x2+y2=2,得到圆心(0,0),半径r=
∵圆心到直线AB的距离d====1<=r,
则直线与圆的位置关系是相交.
故选C
点评:此题考查了直线与圆的位置关系,韦达定理,涉及的知识有:直线的两点式方程,点到直线的距离公式,直线与圆的位置关系由d与r的大小来判断,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交(d为圆心到直线的距离,r为圆的半径).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列四个命题:
①函数f(x)=2x满足:对任意x1,x2∈R,有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)];
②函数f(x)=log2(x+
1+x2
)
,g(x)=1+
2
2x-1
均是奇函数;
③若函数f(x)的图象关于点(1,0)成中心对称图形,且满足f(4-x)=f(x),那么f(2)=f(2012);
④设x1,x2是关于x的方程|logax|=k(a>0,a≠1)的两根,则x1x2=1.
其中正确命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1、x2是关于x的方程x2+mx+m2-m=0的两个不相等的实数根,那么过两点A(x1
x
2
1
),B(x2
x
2
2
)的直线与圆(x-1)2+(y-1)2=1的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2-2(m-1)x+m+1=0的两个实根,又f(m)=x21+x22,求f(m)的解析式及此函数f(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2-2(m-1)x+m+1=0的两个实根,又y=(x1+x2)2-2m-2
(Ⅰ)求m的取值范围;
(Ⅱ)求y=f(m)的解析式及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设x1、x2是关于x的方程x2+mx+
1+m2
=0
的两个不相等的实数根,那么过两点A(x1
x
2
1
)
B(x2
x
2
2
)
的直线与圆x2+y2=1的位置关系是(  )

查看答案和解析>>

同步练习册答案