【题目】已知M为△ABC的中线AD的中点,过点M的直线分别交两边AB、AC于点P、Q,设
=x
,
,记y=f(x).![]()
(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,x∈[0,1].若对任意x1∈[
,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,求实数a的取值范围.
【答案】
(1)解:∵过点M的直线分别交两边AB、AC于P、Q,
∴0<x≤1,0<y≤1
又∵
=x
,
=y
,
∴
=
=
(
+
)=
+
![]()
又∵P、M、Q三点共线,
∴
+
=1,
∴y=f(x)= ![]()
由
得
,
∴
≤x≤1,
∴y=f(x)=
,x∈[
,1]
(2)解:∵f(x)=
=
+
在[
,1]内是减函数,
∴[f(x)]min=f(1)=
,[f(x)]max=f(
)=1,
即函数f(x)的值域为[
,1]
∵g'(x)=3x2+3a2≥0,
∴g(x)在[0,1]内是增函数,
∴[g(x)]min=g(0)=2a,[g(x)]max=g(1)=3a2+2a+1,
∴g(x)的值域为[2a,3a2+2a+1]
由题设得[
,1][2a,3a2+2a+1],
则 ![]()
解得a的取值范围是(﹣∞,﹣
]∪[0,
]
【解析】(1)表示出向量AM,根据P、M、Q三点共线,得到关于x,y的等式,解出y即f(x)的解析式;(2)分别根据f(x),g(x)的单调性,求出f(x),g(x)的值域,结合集合的包含关系得到关于a的不等式组,解出即可.
【考点精析】掌握平面向量的基本定理及其意义是解答本题的根本,需要知道如果
、
是同一平面内的两个不共线向量,那么对于这一平面内的任意向量
,有且只有一对实数
、
,使
.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)的离心率为
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x﹣y+2=0相切. ![]()
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别为双曲线
﹣
=1(a>0,b>0)的左右焦点,如果双曲线上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为( )
A.e> ![]()
B.1<e< ![]()
C.e> ![]()
D.1<e< ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我市某矿山企业生产某产品的年固定成本为
万元,每生产千件该产品需另投入
万元,设该企业年内共生产此种产品
千件,并且全部销售完,每千件的销售收入为
万元,且![]()
(Ⅰ)写出年利润
(万元)关于产品年产量
(千件)的函数关系式;
(Ⅱ)问:年产量
为多少千件时,该企业生产此产品所获年利润最大?
注:年利润=年销售收入-年总成本.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com