【题目】已知椭圆
的离心率为
,且
过点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点(点
均在第一象限),且直线
的斜率成等比数列,证明:直线
的斜率为定值.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆
=1(a>b>0)的离心率为
,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q. ![]()
(1)若直线l的斜率为
,求
的值;
(2)若
=λ
,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下命题,其中真命题的个数是( )
①若“
或
”是假命题,则“
且
”是真命题;
②命题“若
,则
或
”为真命题;
③若
,则
!
④直线
与双曲线
交于
,
两点,若
,则这样的直线有3条;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,D为AB的中点. ![]()
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,直线y=
x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣
}(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,D为AB的中点. ![]()
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂要建造一个长方体的无盖箱子,其容积为48 m3,高为3 m,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为( )
A. 900元 B. 840元
C. 818元 D. 816元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足
=
+μ
(1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 ( )
A.5
B.4 ![]()
C.9
D.5+4 ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com