已知函数
.
(Ⅰ)若
,求
在点
处的切线方程;
(Ⅱ)求函数
的极值点.
(Ⅰ)
;(Ⅱ)当
时,
的极小值点为
和
,极大值点为
;当
时,
的极小值点为
;当
时,
的极小值点为
.
解析试题分析:(Ⅰ)
时,
,先求切线斜率![]()
,又切点为
,利用直线的点斜式方程求出直线方程;(Ⅱ)极值点即定义域内导数为0的根,且在其两侧导数值异号,首先求得定义域为
,再去绝对号,分为
和
两种情况,其次分别求
的根并与定义域比较,将定义域外的舍去,并结合图象判断其两侧导数符号,进而求极值点;
试题解析:
的定义域为
.
(Ⅰ)若
,则
,此时
.因为
,所以
,所以切线方程为
,即
.
(Ⅱ)由于
,
.
⑴ 当
时,
,
,
令
,得
,
(舍去),
且当
时,
;当
时,
,
所以
在
上单调递减,在
上单调递增,
的极小值点为
.
⑵ 当
时,
.
① 当
时,
,令
,得
,
(舍去).
若
,即
,则
,所以
在
上单调递增;
若
,即
, 则当
时,
;当
时,
,所以
在区间
上是单调递减,在
上单调递增,
的极小值点为
.
② 当
时,
.
令
,得
,记
,
若
,即
时,
,所以
在
上单调递减;
若
,即
时,则由![]()
科目:高中数学 来源: 题型:解答题
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽
为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为
,对称轴与地面垂直,沟深2米,沟中水深1米.
(Ⅰ)求水面宽;
(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?![]()
(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
.
(1)若
,则
,
满足什么条件时,曲线
与
在
处总有相同的切线?
(2)当
时,求函数
的单调减区间;
(3)当
时,若
对任意的
恒成立,求
的取值的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
,
,其中
,且
.
⑴当
时,求函数
的最大值;
⑵求函数
的单调区间;
⑶设函数
若对任意给定的非零实数
,存在非零实数
(
),使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
为常数),其图象是曲线
.
(1)当
时,求函数
的单调减区间;
(2)设函数
的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点
为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某地区注重生态环境建设,每年用于改造生态环境总费用为
亿元,其中用于风景区改造为
亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用
随每年改造生态环境总费用
增加而增加;②每年改造生态环境总费用至少
亿元,至多
亿元;③每年用于风景区改造费用
不得低于每年改造生态环境总费用
的15%,但不得高于每年改造生态环境总费用
的25%.
若
,
,请你分析能否采用函数模型y=
作为生态环境改造投资方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com