1,3,5
答案:(1)因为AC、AD、AB两两垂直,建立如图坐标系,
则B(2,0,0),D(0,0,2),
E(1,1,2),F(2,2,0),
则
设平面BEF的法向量
,则可取
,
∴向量
所成角的余弦为
。
即BD和面BEF所成的角的余弦
。
(2)假设线段EF上存在点P使过P、A、C三点的平面和直线DB垂直,不妨设EP与PF的比值为m,则P点坐标为
则向量
,向量

所以
。
点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求。
5.
已知正方形
、
分别是
、
的中点,将
沿
折起,如图所示,记二面角
的大小为
(I) 证明
平面
;
(II)若
为正三角形,试判断点
在平面
内的射影
是否在直线
上,证明你的结论,并求角
的余弦值
分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.
解: (I)证明:EF分别为正方形ABCD得边AB、CD的中点,
EB//FD,且EB=FD,
四边形EBFD为平行四边形
BF//ED.
,
平面
(II)如右图,点A在平面BCDE内的射影G在直线EF上,过点A作AG垂直于平面BCDE,垂足为G,连结GC,GD

ACD为正三角形,
AC=AD.
CG=GD.
G在CD的垂直平分线上,
点A在平面BCDE内的射影G在直线EF上,
过G作GH垂直于ED于H,连结AH,则
,所以
为二面角A-DE-C的平面角
即
.
设原正方体的边长为2a,连结AF,在折后图的
AEF中,AF=
,EF=2AE=2a,即
AEF为直角三角形,
.
在Rt
ADE中, 
.
,
点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线。关键要抓不变的量.
6.
设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB,如果ΔAMD的面积为1,试求能够放入这个棱锥的最大球的半径.
分析:关键是找出球心所在的三角形,求出内切圆半径.
解:
∵AB⊥AD,AB⊥MA,
∴AB⊥平面MAD,
由此,面MAD⊥面AC.
记E是AD的中点,从而ME⊥AD.
∴ME⊥平面AC,ME⊥EF.
设球O是与平面MAD、平面AC、平面MBC都相切的球.
不妨设O∈平面MEF,于是O是ΔMEF的内心.
设球O的半径为r,则r=
设AD=EF=a,∵SΔAMD=1.
∴ME=
.MF=
,
r=
≤
=
-1。
当且仅当a=
,即a=
时,等号成立.
∴当AD=ME=
时,满足条件的球最大半径为
-1.
点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系。注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系。