/11--知识要点:高三数学总复习―概率.files/image002.gif)
高考复习科目:数学 高中数学总复习(十一)
复习内容:高中数学第十一章-概率 第十二章-概率与统计
复习范围:第十一章、第十二章
编写时间:2005-5
修订时间:总计第三次 2005-6
一、概率.
1. 概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.
2. 等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是
,如果某个事件A包含的结果有m个,那么事件A的概率
.
3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广:
.
②对立事件:两个事件必有一个发生的互斥事件叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.
注意:i.对立事件的概率和等于1:
.
ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.
③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A?B)=P(A)?P(B). 由此,当两个事件同时发生的概率P(AB)等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A:“抽到老K”;B:“抽到红牌”则 A应与B互为独立事件[看上去A与B有关系很有可能不是独立事件,但
.又事件AB表示“既抽到老K对抽到红牌”即“抽到红桃老K或方块老K”有
,因此有
.
推广:若事件
相互独立,则
.
注意:i. 一般地,如果事件A与B相互独立,那么A 与
与B,
与
也都相互独立.
ii. 必然事件与任何事件都是相互独立的.
iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.
④独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的. 如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率:
.
4. 对任何两个事件都有/11--知识要点:高三数学总复习―概率.files/image032.gif)
二、随机变量.
1. 随机试验的结构应该是不确定的.试验如果满足下述条件:
①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.
它就被称为一个随机试验.
2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则
也是一个随机变量.一般地,若ξ是随机变量,
是连续函数或单调函数,则
也是随机变量.也就是说,随机变量的某些函数也是随机变量.
设离散型随机变量ξ可能取的值为:/11--知识要点:高三数学总复习―概率.files/image040.gif)
ξ取每一个值
的概率
,则表称为随机变量ξ的概率分布,简称ξ的分布列.
/11--知识要点:高三数学总复习―概率.files/image046.gif)
/11--知识要点:高三数学总复习―概率.files/image048.gif)
/11--知识要点:高三数学总复习―概率.files/image050.gif)
…
/11--知识要点:高三数学总复习―概率.files/image052.gif)
…
P
/11--知识要点:高三数学总复习―概率.files/image054.gif)
/11--知识要点:高三数学总复习―概率.files/image056.gif)
…
/11--知识要点:高三数学总复习―概率.files/image058.gif)
…
有性质①
;
②
.
注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:
即
可以取0~5之间的一切数,包括整数、小数、无理数.
3. ⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:
[其中
]
于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作
~B(n?p),其中n,p为参数,并记
.
⑵二项分布的判断与应用.
①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.
②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.
4. 几何分布:“
”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为
,事A不发生记为
,那么
.根据相互独立事件的概率乘法分式:/11--知识要点:高三数学总复习―概率.files/image082.gif)
于是得到随机变量ξ的概率分布列.
/11--知识要点:高三数学总复习―概率.files/image046.gif)
1
2
3
…
k
…
P
q
qp
/11--知识要点:高三数学总复习―概率.files/image086.gif)
…
/11--知识要点:高三数学总复习―概率.files/image088.gif)
…
我们称ξ服从几何分布,并记
,其中/11--知识要点:高三数学总复习―概率.files/image092.gif)
5. ⑴超几何分布:一批产品共有N件,其中有M(M<N)件次品,今抽取
件,则其中的次品数ξ是一离散型随机变量,分布列为
.〔分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定
<
时
,则k的范围可以写为k=0,1,…,n.〕
⑵超几何分布的另一种形式:一批产品由 a件次品、b件正品组成,今抽取n件(1≤n≤a+b),则次品数ξ的分布列为
.
⑶超几何分布与二项分布的关系.
设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数
的分布列可如下求得:把
个产品编号,则抽取n次共有
个可能结果,等可能:
含
个结果,故
,即
~
.[我们先为k个次品选定位置,共
种选法;然后每个次品位置有a种选法,每个正品位置有b种选法] 可以证明:当产品总数很大而抽取个数不多时,
,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.
三、数学期望与方差.
1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为
![]()
![]()
![]()
…
![]()
…
P
![]()
![]()
…
![]()
…
则称
为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.
2. ⑴随机变量
的数学期望:
①当
时,
,即常数的数学期望就是这个常数本身.
②当
时,
,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.
③当
时,
,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.
ξ
0
1
P
q
p
⑵单点分布:
其分布列为:
.
⑶两点分布:
,其分布列为:(p + q = 1)
⑷二项分布:
其分布列为
~
.(P为发生
的概率)
⑸几何分布:
其分布列为
~
.(P为发生
的概率)
3.方差、标准差的定义:当已知随机变量ξ的分布列为
时,则称
为ξ的方差. 显然
,故
为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.
越小,稳定性越高,波动越小.
4.方差的性质.
⑴随机变量
的方差
.(a、b均为常数)
ξ
0
1
P
q
p
⑵单点分布:
其分布列为![]()
⑶两点分布:
其分布列为:(p + q = 1)
⑷二项分布:![]()
⑸几何分布:
5. 期望与方差的关系.
⑴如果
和
都存在,则![]()
⑵设ξ和
是互相独立的两个随机变量,则![]()
⑶期望与方差的转化:
⑷
(因为
为一常数)
.
四、正态分布.(基本不列入考试范围)
1.密度曲线与密度函数:对于连续型随机变量ξ,位于x轴上方,ξ落在任一区间
内的概率等于它与x轴.直线
与直线
所围成的曲边梯形的面积
(如图阴影部分)的曲线叫ξ的密度曲线,以其作为
图像的函数
叫做ξ的密度函数,由于“
”
是必然事件,故密度曲线与x轴所夹部分面积等于1.
2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:
. (
为常数,且
),称ξ服从参数为
的正态分布,用
~
表示.
的表达式可简记为
,它的密度曲线简称为正态曲线.
⑵正态分布的期望与方差:若
~
,则ξ的期望与方差分别为:
.
⑶正态曲线的性质.
①曲线在x轴上方,与x轴不相交.
②曲线关于直线
对称.
③当
时曲线处于最高点,当x向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.
④当
<
时,曲线上升;当
>
时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x轴为渐近线,向x轴无限的靠近.
⑤当
一定时,曲线的形状由
确定,
越大,曲线越“矮胖”.表示总体的分布越分散;
越小,曲线越“瘦高”,表示总体的分布越集中.
3. ⑴标准正态分布:如果随机变量ξ的概率函数为
,则称ξ服从标准正态分布. 即
~
有
,
求出,而P(a<
≤b)的计算则是
.
注意:当标准正态分布的
的X取0时,有
当
的X取大于0的数时,有
.比如
则
必然小于0,如图.
⑵正态分布与标准正态分布间的关系:若
~
则ξ的分布函数通
常用
表示,且有
.
4.⑴“
”原则.
假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布
.②确定一次试验中的取值
是否落入范围
.③做出判断:如果
,接受统计假设. 如果
,由于这是小概率事件,就拒绝统计假设.
⑵“3
”原则的应用:若随机变量ξ服从正态分布
则 ξ落在
内的概率为99.7% 亦即落在
之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com