四川师大附中高2006届高三数学总复习(十二)

§12. 极 限  知识要点

1. ⑴第一数学归纳法:①证明当取第一个时结论正确;②假设当)时,结论正确,证明当时,结论成立.

⑵第二数学归纳法:设是一个与正整数有关的命题,如果

①当)时,成立;

②假设当)时,成立,推得时,也成立.

那么,根据①②对一切自然数时,都成立.

2. ⑴数列极限的表示方法:

②当时,.

⑵几个常用极限:

为常数)

③对于任意实常数,

时,

时,若a = 1,则;若,则不存在

时,不存在

⑶数列极限的四则运算法则:

如果,那么

特别地,如果C是常数,那么

.

⑷数列极限的应用:

求无穷数列的各项和,特别地,当时,无穷等比数列的各项和为.

(化循环小数为分数方法同上式)

注:并不是每一个无穷数列都有极限.

3. 函数极限;

⑴当自变量无限趋近于常数(但不等于)时,如果函数无限趋进于一个常数,就是说当趋近于时,函数的极限为.记作或当时,.

注:当时,是否存在极限与处是否定义无关,因为并不要求.(当然,是否有定义也与处是否存在极限无关.函数有定义是存在的既不充分又不必要条件.)

处无定义,但存在,因为在处左右极限均等于零.

⑵函数极限的四则运算法则:

如果,那么

特别地,如果C是常数,那么

.

注:①各个函数的极限都应存在.

②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况.

⑶几个常用极限:

(0<<1);>1)

4. 函数的连续性:

⑴如果函数f(x),g(x)在某一点连续,那么函数在点处都连续.

⑵函数f(x)在点处连续必须满足三个条件:

①函数f(x)在点处有定义;②存在;③函数f(x)在点处的极限值等于该点的函数值,即.

⑶函数f(x)在点处不连续(间断)的判定:

如果函数f(x)在点处有下列三种情况之一时,则称为函数f(x)的不连续点.

①f(x)在点处没有定义,即不存在;②不存在;③存在,但.

5. 零点定理,介值定理,夹逼定理:

⑴零点定理:设函数在闭区间上连续,且.那么在开区间内至少有函数的一个零点,即至少有一点)使.

⑵介值定理:设函数在闭区间上连续,且在这区间的端点取不同函数值,,那么对于之间任意的一个数,在开区间内至少有一点,使得).

⑶夹逼定理:设当时,有,且,则必有

注::表示以为的极限,则就无限趋近于零.(为最小整数)

6. 几个常用极限:

为常数)

为常数)


同步练习册答案