中考数学压轴题解题方法
长春华翼教育培训学校 张 锐
解答题在中考中占有相当大的比重,主要由综合性问题构成,就题型而言,包括计算题、证明题和应用题等.它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性.一般地,解题设计要因题定法,无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等.
(一)解答综合、压轴题,要把握好以下各个环节:
1.审题:这是解题的开始,也是解题的基础.一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.
审题思考中,要把握“三性”,即明确目的性,提高准确性,注意隐含性.解题实践表明:条件暗示可知并启发解题手段,结论预告并诱导解题方向,只有细致地审题,才能从题目本身获得尽可能多的信息.这一步,不要怕慢,其实“慢”中有“快”,解题方向明确,解题手段合理得当,这是“快”的前提和保证.否则,欲速则不达.
2.寻求合理的解题思路和方法:破除模式化、力求创新是近几年中考数学试题的显著特点,解答题体现得尤为突出,因此,切忌套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,谨慎地确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃.
(二)题型解析
类型1 直线型几何综合题
这类题常见考查形式为推理与计算.对于推理,基本思路为分析与综合,即从需要证明的结论出发逆推,寻找使其成立的条件,同时从已知条件出发来推导一些结论,再设法将它们联系起来.对于计算,基本思路是利用几何元素(比如边、角)之间的数量关系结合方程思想来处理.
例1(2007?四川内江)如图1,在
中,
,
,
,动点
(与点A、C不重合)在
边上,
交
于点
.
(1)当
的面积与四边形
的面积相等时,求
的长;
(2)当
的周长与四边形
的周长相等时,求
的长;
(3)试问在
上是否存在点
,使得
为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出
的长.
分析:(1)中面积相等可以转化为“
与△ACB的 面积比为1:2”,因为△ECF∽△ACB,从而要求
长,只要借助于相似比与面积比的关系即可得解.因为相似三角形对应边成比例,从而第(2)题可利用比例线段来找线段间关系,再根据周长相等来建立方程.第(3)题中假设存在符合条件的三角形,根据相似三角形中对应边成比例可建立方程.
解:(1)因为△ECF的面积与四边形EABF的面积相等,所以S△ECF:S△ACB=1:2,又因为EF∥AB ,所以△ECF∽△ACB.所以
. 因为CA=4,所以CE=
.
(2)设CE的长为x,因为△ECF∽△ACB, 所以
. 所以CF=
. 根据周长相等可得:
.解得
.
(3)△EFP为等腰直角三角形,有两种情况:
①如图2,假设∠PEF=90°,EP=EF.由AB=5,BC=3,AC=4,得∠C=90°,
所以Rt△ACB斜边AB上高CD=
.设EP=EF=x,由△ECF∽△ACB,得
|