2008―2009学年度
湖北省补习学校联合体大联考
数 学 试 题 (文科)
命题学校:汉川补习高中 命题人: 程为和 祁春光
审题学校:黄陂补习学校 审题人: 张友力 宋玉成
考试时间:
本试卷共21题,满分150分.考试用时120分钟.
★ 祝 考 试 顺 利 ★
注意事项:
1.答卷前,考生务必将自己的学校、班级、姓名、考号填写在答题卡指定位置.
2.考生将答案都直接填(答)在答题卡上,答在试卷上无效.
3.解答题的答案不得超出指定的边框.
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合
,
,那么“
”是“
”的 ( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.设向量
,
,当向量
与
平行时,则
等于 ( )
A.2 B
D.![]()
3.已知
之间的大小关系是
( )
A.
B.
C.
D.
的关系随c而定
4.下列命题正确的是 ( )
A.函数
在区间
内单调递增
B.函数
的最小正周期为![]()
C.函数
的图像是关于直线
成轴对称的图形
D.函数
的图像是关于点
成中心对称的图形
5.以
为首项的等差数列
,当且仅当
时,其前n项和最小,则公差d的取值范围是
( )
A.
B.
C.
D.![]()
6.函数
的反函数是
( )
A.
B.![]()
C.
D.![]()
7. 若奇函数
满足
则
( )
A.
B.
8.设
为坐标原点,
,若点
满足
,则
取得最小值时,点
的个数是
( )
A.
B.
C.
D.无数个
9.已知两点
,点
是曲线C:
上任意一点,则△ABP面积的
最小值是 ( )
A.
B. ![]()
10、设
是三角形的一个内角,且
,则方程
所表示的曲线为( ).
A.焦点在
轴上的椭圆
B.焦点在
轴上的椭圆
C.焦点在
轴上的双曲线
D.焦点在
轴上的的双曲线
二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在答题卡相应位置上.
11.关于实数
的不等式
的解集是 .
12.在△ABC中,角A、B、C所对的边分别为
、b、c ,若
,
13. 若关于
的方程
有四个不相等的实根,则实数
的取值范围为____。
14. 过点![]()
的直线与抛物线
交于
两点,且
则此直线的方程为_________。
15.已知命题
①函数
在
上是减函数;
②已知
则
在
方向上的投影为
;
③函数
的最小正周期为
;
④函数
的定义域为R, 则
是奇函数的充要条件是
;
⑤在平面上,到定点
的距离与到定直线
的距离相等的点的轨迹是抛物线。
其中,正确命题的序号是 . (写出所有正确命题的序号)
三、解答题: 本大题共6小题, 共75分. 解答应写出文字说明, 证明过程或演算步骤.
16.(本小题满分12分)已知向量
(
) 和
=(
),
∈[π,2π].
(1)求
的最大值;
(2)当
=
时,求
的值.
17.(本小题满分12分)已知函数
的图象与
的图象关于直线
对称,函数
。
(1)判断函数
的奇偶性;
(2)求函数
在区间
上的最大值和最小值。
18.(本小题满分12分)武汉东湖风景区有50辆自行车供游客租赁使用,管理这些自行车
的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部
租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自
行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管
理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理
费用后的所得)。
(1)求函数
的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
19.(本小题满分12分)设函数
,
,当
时,
取得极值。
⑴ 求
的值,并判断
是函数
的极大值还是极小值;
⑵ 当
时,函数
与
的图象有两个公共点,求
的取值范围。
20.(本小题满分13分)已知数列
满足
,
(
).
(1)判断数列
是否为等比数列?若不是,请说明理由;若是,试求出通项
;
(2)如果
时,数列
的前
项和为
,试求出
。
21. (本小题满分14分)已知椭圆的一个焦点
,对应的准线方程为
,且离心率
满足
,
,
成等比数列.(1)求椭圆的方程;(2)试问是否存在直线
,使
与椭圆交于不同的两点
、
,且线段
恰被直线
平分?若存在,求出
的倾斜角的取值范围;若不存在,请说明理由.
湖北省补习学校联合体大联考
一、选择题: B C A D B C A B D C
二、填空题:
11、
12、
13、
14、
15、②③
三、解答题:
16.解:(1)
……………………………1分
=
=
=
…………………………………………4分
∵θ∈[π,2π],∴
,
∴
≤1 则
max=2
. ………………………………………………6分
(2) 由已知
,得
…………………………………8分
又
∴
……………………10分
∵θ∈[π,2π]∴
,∴
. …………………12分
17.解:依题意知:
.……4分
(1)对于
且
是奇函数……………………………………….……6分
(2)
当
时,
单调递减,
当
时,
单调递增………………………………………….…8分
……….…………..…10分
又
………….……12分
18.解:(1)当
………………2分

,..............................................5分
故
................6分
定义域为
.................................7分
(2)对于
,
显然当
(元), ..................................9分

∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多。..........12分
19.解:(1)由题意
…………………………2分
当
时,
取得极值,
所以 
即
…………………4分
此时当
时,
,当
时,
,
是函数
的最小值。
………………………6分
(2)设
,则
,
……8分
设
,
,令
解得
或
列表如下:











__
0
+










函数
在
和
上是增函数,在
上是减函数。
当
时,
有极大值
;当
时,
有极小值
……10分
函数
与
的图象有两个公共点,
函数
与
的图象有两个公共点
或
……12分
20.解:(1)
,
.令
,则
.…………2分
,
当
时,
,则
.
数列
不是等比数列.
当
时,数列
不是等比数列.………………… 5分
当
时,
,则数列
是等比数列,且公比为2.
,即
.解得
.……7分
(2)由(Ⅰ)知,当
时,
,
.
令
, ………………………①
则
, …………②
由①-②:

,
, ………………………………..………11分
则
. …………………..………13分
21.解:(1)∵
成等比数列 ∴
设
是椭圆上任意一点,依椭圆的定义得
即
为所求的椭圆方程.
……………………5分
(2)假设
存在,因
与直线
相交,不可能垂直
轴 …………………6分
因此可设
的方程为:
由

① ……………………8分
方程①有两个不等的实数根
∴
② ………10分
设两个交点
、
的坐标分别为
∴
∵线段
恰被直线
平分 ∴
∵
∴
③ 把③代入②得 
∵
∴
∴
解得
或
………13分
∴直线
的倾斜角范围为
…………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com