2008―2009学年度南昌市高三第一次模拟测试卷

数    学  (理科)

参考公式:

    如果事件A、B互斥,那么                           球的表面积公式

                          

    如果事件A、B相互独立,那么                       其中R表示球的半径

       P(A?B) = P(A)?P(B)                              球的体积公式

    如果事件A在一次试验中发生的概率是P,             

    那么n次独立重复试验中恰好发生k次的概率   

                                 其中R表示球的半径

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.已知集合

试题详情

集合,则集合M、P之间的关系是  (    )

试题详情

A.     B.     C.     D.

试题详情

2.已知,函数与函数的图象可能是          (    )

 

试题详情

1.jpg

 

试题详情

3.在数列中,,则的值为    (    )

A.2           B.-2           C.2i           D.1024i

试题详情

 4.设是三个互不重合的平面,是直线,给出下列命题

试题详情

    ①若,则;                ②若,则

试题详情

    ③若内的射影互相垂直,则;   ④若

    其中正确命题的个数为                                              (    )

A.0                B. l              C.2                  D. 3

试题详情

 5.设,把的图象按向量平移后,图象恰好为函数的图象,则m的值可以为                              (    )

试题详情

      A.    B.    C.    D.

试题详情

6.已知等差数列的前n项和为,且,则过点的直线的一个方向向量的坐标可以是(    )

试题详情

A.(2,4)          B.        C.        D. (-1,-1)

高三数学(理科)(模拟一)第1页(共4页)

试题详情

7.设的展开式的各项系数之和为M,二项式系数之和为N,若,则展开式中x3的系数为(    )

A.-150         B.150         C.-500       D.500

试题详情

8.设函数,则对于任意的实数a和b, a + b>0是f(a)+f(b)>0的(    )

A.必要不充分条件  B.充分不必要条件  C.充要条件   D.既不充分也不必要条件

试题详情

9.设,若函数有大于零的极值点,则

试题详情

A.a>-3    B.a<-3    C.a>    D.    

试题详情

10.过点P(4,2)作圆的两条切线,切点分别为A、B,0为坐标原点,则的外接圆方程是(    )

试题详情

A.         B.

试题详情

C.         D.

试题详情

1.jpg11.如图,在棱长为4的正方体

试题详情

中,E、F分别是AD, 

试题详情

,的中点,长为2的线段MN的一个

端点M在线段EF上运动,另一个端点N在

 

试题详情

底面上运动,则线段MN的中

试题详情

点P的轨迹(曲面)与二面角A―

试题详情

所围成的几何体的体积为(    )

试题详情

A.   B.   C.   D.

试题详情

12.若

试题详情

,则等于(    )

试题详情

A.      B.      C.       D.

试题详情

二、填空题(本大题共4小题,每小题4分。共16分.请把答案填在答题卡上)

13.若抛物线的焦点与椭圆的右焦点重合,则p的值为________.

试题详情

14.一对酷爱运动的年轻夫妇,让刚满十个月大的婴儿把“0,0,2,8,北,京”六张卡片排成一行,若婴儿能使得排成的顺序为“2008北京”或“北京2008”,则受到父母的夸奖,那么婴儿受到夸奖的概率为___________.

试题详情

15.设直线平面,过平面外一点A作直线,与都成角的直线有____条.

试题详情

16.不等式组 所表示的平面区域为D,若D的面积为S,则的最小值为_____________。

 

高三数学(理科)(模拟一)第2页(共4页)

试题详情

三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)

17.(本小题满分12分)

试题详情

在锐角中,已知内角A、B、C所对的边分别为a、b、c,向量

试题详情

 且

 (I) 求角B的大小;

试题详情

 (II)如果,求的面积的最大值.

 

 

 

 

 

 

 

 

 

 

 

试题详情

18.(本小题满分12分)

试题详情

已知数列,其前n项和满足 (是大于0的常数),且

试题详情

试题详情

 (I) 求的值;

试题详情

 (Ⅱ)求数列的通项公式

试题详情

 (Ⅲ)设数列的前n项和为,试比较的大小.

 

 

 

 

 

 

试题详情

19.(本小题满分12分)

试题详情

 一个正四面体的四个面上分别涂有l,2,3,4 四个数字,现随机投掷两次,正四面体面朝下的数字分别为,记

试题详情

 (1)分别求出取得最大值和最小值时的概率;

试题详情

 (2)求的分布列及数学期望.

 

 

 

 

 

 

高三数学(理科)(模拟一)第3页(共4页)

试题详情

20.(本小题满分12分)

试题详情

1.jpg 已知斜三棱柱在底面ABC上的射影恰为AC的中点D,又知

试题详情

(I) 求证:平面

试题详情

(Ⅱ)求到平面的距离;

试题详情

(Ⅲ)求二面角的大小.

 

 

 

 

 

 

试题详情

21.(本小题满分12分)

试题详情

 已知函数,且函数的图象关于原点对称,其图象在处的切线方程为

试题详情

 (1)求的解析式;

试题详情

 (2)是否存在区间使得函数的定义域和值域均为,且其解析式为f(x)的解析式?若存在,求出这样的一个区间[m,n];若不存在,则说明理由.

 

 

 

 

 

试题详情

22.(本小题满分14分)

试题详情

设双曲线的左、右顶点分别为,垂直于轴的直线与双曲线 交于不同的两点P、Q。

试题详情

  (1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;

试题详情

  (2)求直线的交点M的轨迹E的方程;

试题详情

  (3)过点作直线与(2)中的轨迹E交于不同的两点A、B,设

试题详情

  若,求 (T为(1)中的点)的取值范围.

 

 

 

 

 

高三数学(理科)(模拟一)第4页(共4页)

2008―2009学年度南昌市高三第一次模拟测试卷

试题详情

一.选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

A

B

D

B

B

C

B

A

C

D

二.填空题

13. 4 ;          14.  ;      15. 2   ;     16.32 ;

三.解答题.

17.解:(1)  ……………………………2分

  ……………………………4分

  …………………………………………6分

(2)由余弦定理得:

(当且仅当时等号成立)………………9分

  …………………………………………………11分

的面积最大值为  …………………………………………………………12分

18.解:(Ⅰ)由

 …………………2分

   ……………………………………4分

(Ⅱ)由整理得

∴数列是以为首项,以2为公比的等比数列, …………………6分

∵当满足  ………………………………………8分

(Ⅲ)

  ………………………………………………………………10分

∴当时,,当时,

高三数学(理科)(模拟一)答案第1页

即当或2时,。当时,……2分

19.解:(Ⅰ)掷出点数x可能是:1,2,3,4.

分别得:。于是的所有取值分别为:0,1,4 .

因此的所有取值为:0,1,2,4,5,8.  …………………………………………2分

时,可取得最大值8,

此时,; ………………………………………………………4分

时且时,可取得最小值 0.

此时   …………………………………………………………6分

(Ⅱ)由(1)知的所有取值为:0,1,2,4,5,8.

 ……………………………………………………………7分

时,的所有取值为(2,3)、(4,3)、(3,2),(3,4)即

时,的所有取值为(2,2)、(4,4)、(4,2),(2,4)即…8分

时,的所有取值为(1,3)、(3,1)即

时,的所有取值为(1,2)、(2,1)、(1,4),(4,1)即 …9分

所以的分布列为:

0

1

2

4

5

8

…………10分

 

的期望 ………………12分

1.jpg20.解:(Ⅰ)因为平面,   

所以平面平面,………………1分

,所以平面

,又 ………2分

所以平面; ………………………3分

(Ⅱ)因为,所以四边形为菱形,

又D为AC中点,知 ……………4分

中点F,则平面,从而平面平面………………6分

,则

高三数学(理科)(模拟一)答案第2页

    在中,,故  ……………………………7分

到平面的距离为 …………………………………………8分

(Ⅲ)过,连,则

从而为二面角的平面角,  ……………………………………9分

,所以

中,………………………………………11分

故二面角的大小为 ………………………………………12分

解法2:(Ⅰ)如图,取AB的中点E,则DE//BC,因为

1.jpg所以平面…………………1分

轴建立空间坐标系,

 ……………………2分

从而平面   ……………3分

(Ⅱ)由,得 ………4分

设平面的法向量为

所以……………………………7分

所以点到平面的距离………………………………8分

(Ⅲ)再设平面的法向量为

 所以 …………………………………9分

,根据法向量的方向, ………………………11分

可知二面角的大小为………………………………………12分

高三数学(理科)(模拟一)答案第3页

21.解:(1)∵的图象关于原点对称,∴恒成立,即

的图象在处的切线方程为…2分

,且 …………………3分

解得 故所求的解析式为 ……6分

(2)解

,由且当时,  ………………………………………………………………………………8分

递增;在上递减。…9分

上的极大值和极小值分别为

故存在这样的区间其中一个区间为…12分

22. 解:(1)由题意得

① …………………………………2分

在双曲线上,则

联立①、②,解得:

由题意,∴点T的坐标为(2,0). ………………………………4分

(2)设直线的交点M的坐标为

、P、M三点共线,得:  ①

三点共线,得:

联①、②立,解得: ……………………………………………6分

在双曲线上,∴

∴轨迹E的方程为  ………………………………………8分

高三数学(理科)(模拟一)答案第4页

(3)容易验证直线的斜率不为0.

故要设直线的方程为代入中得:

,则由根与系数的关系,

得:,①   ②  ………………………………10分

,∴有。将①式平方除以②式,得:

  ……………………………………………………………12分

  ∴

  …………………14分

 

 

 

 

 

高三数学(理科)(模拟一)答案第5页

 

 

 

 


同步练习册答案