已知的定义域为区间[-1.1]. 查看更多

 

题目列表(包括答案和解析)

已知的定义域为区间[-1,1]。

   (1)求函数的解析式;

   (2)判断的单调性;

   (3)若方程的取值范围。

查看答案和解析>>

已知定义域为R的函数在区间内是增函数。

(1)求实数的取值范围;

(2)若的极小值为-2,求实数的值。

查看答案和解析>>

已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),试判断f(-1)、f(9)、f(13)的大小。

查看答案和解析>>

已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),试判断f(-1)、f(9)、f(13)的大小。

查看答案和解析>>

已知=(2asin2x,a),=(-1,2sinxcosx+1),O为坐标原点,a≠0,设f(x)=·+b,b>a。

(1)若a>0,写出函数y=f(x)的单调递增区间;

(2)若函数y=f(x)的定义域为[,π],值域为[2,5],求实数a与b的值。

 

查看答案和解析>>

 

一、选择题

1.D   2.A   3.C   4.B   5.D   6.A   7.A   8.A   9.B   10.D

2,4,6

11.40    12.   13.3    14.①②③④

三、解答题

15.解:(1)设数列

由题意得:

解得:

   (2)依题

为首项为2,公比为4的等比数列

   (2)由

16.解:(1)

   (2)由

 

17.解法1:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时。

依题意,设与速度有关的每小时燃料费用为

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

解法2:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时,

依题意,设与速度有关的每小时燃料费用为

元,

且当时等号成立。

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

18.证明:(1)连结AC、BD交于点O,再连结MO

   (2)

   

19.解:(1),半径为1依题设直线

    由圆C与l相切得:

   (2)设线段AB中点为

    代入即为所求的轨迹方程。

   (3)

   

20.解:(1)

   (2)

   (3)由(2)知

在[-1,1]内有解