C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

一、选择题:

2,4,6

二、填空题:

13、  14、 15、75  16、  17、②  18、④   19、

20、21、22、23、24、25、

26、

三、解答题:

27解:(1)当时,

,∴上是减函数.

(2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 当时,  不恒成立;

时,不等式恒成立,即,∴.

时,不等式不恒成立. 综上,的取值范围是.

28解:(1)

(2)20 

20与=3解得b=4,c=5或b=5,c= 4

(3)设D到三边的距离分别为x、y、z,则 

 又x、y满足

画出不等式表示的平面区域得: 

29(1)证明:连结,则//,  

是正方形,∴.∵,∴

,∴.  

,∴

(2)证明:作的中点F,连结

的中点,∴

∴四边形是平行四边形,∴

的中点,∴

,∴

∴四边形是平行四边形,//

∴平面

平面,∴

(3)

. 

30解: (1)由,

,

则由,解得F(3,0) 设椭圆的方程为,

,解得 所以椭圆的方程为  

(2)因为点在椭圆上运动,所以,   从而圆心到直线的距离. 所以直线与圆恒相交

又直线被圆截得的弦长为

由于,所以,则,

即直线被圆截得的弦长的取值范围是

31解:(1)g(t) 的值域为[0,]

(2)

(3)当时,+=<2;

时,.

所以若按给定的函数模型预测,该市目前的大气环境综合指数不会超标。

32解:(1)

 当时,时,

 

 的极小值是

(2)要使直线对任意的都不是曲线的切线,当且仅当时成立,

(3)因最大值

 ①当时,

 

  ②当时,(?)当

 

(?)当时,单调递增;

1°当时,

2°当

(?)当

(?)当

综上