19.某工厂生产一种仪器的元件.由于受生产能力和技术水平的限制.会产生一些次品.根据经验知道.其次品率与日产量之间大体满足关系: 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

某工厂生产一种产品的成本费由三部分组成:① 职工工资固定支出元;② 原材料费每件40元;③ 电力与机器保养等费用为每件元,其中是该厂生产这种产品的总件数.

(1)把每件产品的成本费P(x)(元)表示成产品件数的函数,并求每件产品的最低成本费;

(2)如果该厂生产的这种产品的数量不超过件,且产品能全部销售.根据市场调查:每件产品的销售价与产品件数有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额—总的成本)

 

查看答案和解析>>

(本小题满分12分)                                                

某工厂生产一种精密仪器, 产品是否合格需先后经过两道相互独立的工序检查,且当第一道工序检查合格后才能进入到第二道工序,经长期检测发现,该仪器第一道工序检查合格的概率为,第二道工序检查合格的概率为,已知该厂每月生产3台这种仪器.

(1)求生产一台合格仪器的概率;

(2)用表示每月生产合格仪器的台数,求的分布列和数学期望;

(3)若生产一台合格仪器可盈利10万元,不合格要亏损3万元,求该厂每月的期望盈利额.

 

查看答案和解析>>


(本题满分12分)
某工厂2010年第一季度生产的A、B、C、D四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取50件样品参加四月份的一个展销会:
(1)问A、B、C、D型号的产品各抽取多少件?
(2)从50件样品随机的抽取2件,求这2件产品恰好是不同型号产品的概率;
  (3)从A、C型号的产品中随机的抽取3件,用表示抽取A种型号的产品件数,求的分布列和数学期望。

查看答案和解析>>

(本题满分12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但出厂单价不能低于51元.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?

(2)设一次订购量为个时,零件的实际出厂单价为P元,写出函数的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个时,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)

 

查看答案和解析>>

(本小题满分12分)

某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:

7

7

7.5

9

9.5

6

8.5

8.5

   由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.

(Ⅰ)求表格中的值;

(Ⅱ)若从被检测的5件种元件中任取2件,求2件都为正品的概率.

 

查看答案和解析>>

一.选择题

1~10  BADDA    BCBCD

二.填空题

11.2      12.      13.      14.8        15.45

三.解答题

16.解:因为,所以 ………………………………(1分)

   由,解得 ………………………………(3分)

  因为,故集合应分为两种情况

(1)时,  …………………………………(6分)

(2)时,  ……………………………………(8分)

所以     …………………………………………………(9分)

假,则…………………………………………………………(10分)

真,则  ……………………………………………………………(11分)

故实数的取值范围为………………………………………(12分)

17.解:(1)由1的解集有且只有一个元素知

        ………………………………………(2分)

时,函数上递增,此时不满足条件2

综上可知  …………………………………………(3分)

 ……………………………………(6分)

(2)由条件可知……………………………………(7分)

时,令

所以……………………………………………………………(9分)

时,也有……………………………(11分)

综上可得数列的变号数为3……………………………………………(12分)

18.解:(1)当时,………………………(1分)

 当时,……………………(2分)

,知又是周期为4的函数,所以

…………………………(4分)

…………………………(6分)

故当时,函数的解析式为

………………………………(7分)

(2)当时,由,得

解上述两个不等式组得…………………………………………(10分)

的解集为…………………(12分)

19.解:(1)当时,……………………(2分)

时,

综上,日盈利额(万元)与日产量(万件)的函数关系为:

…………………………………………………………(4分)

(2)由(1)知,当时,每天的盈利额为0……………………………(6分)

        当时,

当且仅当时取等号

所以时,,此时……………………………(8分)

            时,由

函数上递增,,此时……(10分)

综上,若,则当日产量为3万件时,可获得最大利润

        若,则当日产量为万件时,可获得最大利润…………(12分)

20.解:(1)将点代入

       因为直线,所以……………………………………(3分)

       (2)

为偶数时,为奇数,……………(5分)

为奇数时,为偶数,(舍去)

综上,存在唯一的符合条件…………………………………………………(7分)

(3)证明不等式即证明

     成立,下面用数学归纳法证明

1当时,不等式左边=,原不等式显然成立………………………(8分)

2假设时,原不等式成立,即

    当

     =

,即时,原不等式也成立 ………………(11分)

根据12所得,原不等式对一切自然数都成立 ……………………………(13分)

21.解:(1)由……………………(1分)

     

     又的定义域为,所以

时,

时,为减函数

时,为增函数………………………(5分)

   所以当时,的单调递增区间为

                         单调递减区间为…………………(6分)

(2)由(1)知当时,递增无极值………(7分)

所以处有极值,故

     因为,所以上单调

     当为增区间时,恒成立,则有

    ………………………………………(9分)

为减区间时,恒成立,则有

无解  ……………………(13分)

由上讨论得实数的取值范围为 …………………………(14分)

 

 

 


同步练习册答案