21. 在某海滨城市附近海面有一台风.据监测.当前台风中心位于城市O的东偏南 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)在某次足球比赛中,甲、乙、丙三队进行单循环赛(即每两人比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为

(Ⅰ)求甲获得小组第一且丙获得小组第二的概率;

(Ⅱ)求三队得分相同的概率;

(Ⅲ)求甲不是小组第一的概率.

 

查看答案和解析>>

(本小题满分12分)
在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.
(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率。
(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率。

查看答案和解析>>

()(本小题满分12分)

 在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.

(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率。

(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率。

查看答案和解析>>

(本小题满分12分)在某社区举办的《防控甲流知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关甲流知识的问题,已知甲回答对这道题的概率是,甲、丙两人都回答错的概率是,乙、丙两人都回答对的概率是  (1)求乙、丙二人各自回答对这道题的概率;

   (2)用表求乙、丙二人中回答对该题的人数,求的分布列和数学期望

查看答案和解析>>

(本小题满分12分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投次:在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次.某同学在处的命中率,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为

0

2

3

4

5

(1) 求的值;(2) 求随机变量的数学期望;

(3) 试比较该同学选择都在处投篮得分超过分与选择上述方式投篮得分超过分的概率的大小.

 

查看答案和解析>>

一、

1.C  2.D  3.B  4.C  5.B  6.D  7.D  8.C  9.C  10.B  11.C  12.A

二、13.   14.  15.  16.72

三、

17.(I)证明:取BD中点M,连结MC,FM,

        ∵F为BD1中点, ∴FM∥D1D且FM=D1D

又EC=CC1,且EC⊥MC,

∴四边形EFMC是矩形  ∴EF⊥CC1  

又CM⊥面DBD1  ∴EF⊥面DBD1

∵BD1面DBD1

∴EF⊥BD1  故EF为BD1与CC1的公垂线

(II)解:连结ED1,有V

由(I)知EF⊥面DBD1,设点D1到面BDE的距离为d,

则S△DBC?d=S△DCD?EF.

∵AA1=2?AB=1.

故点D1到平面BDE的距离为.

18.解:设z=

        由题设

       即 

    (舍去)

 

       即|z|=

19.(I)解∵

(II)证明:由已知

     

         =

           所以

20.解(I)

               

       所以函数的最小正周期为π,最大值为.

(Ⅱ)由(Ⅰ)知

1

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.解:如图建立坐标系:以O为原点,正东方向为x轴正向.

        在时刻:t(h)台风中心的坐标为

        此时台风侵袭的区域是,

        其中t+60,

        若在t时,该城市O受到台风的侵袭,则有

即,   解得.

答:12小时后该城市开始受到台风气侵袭

22.解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得

点P到定点距离的和为定值.

按题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a

设,

由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak).

直线OF的方程为:,        ①

直线GE的方程为:.  ②

从①,②消去参数k,得点P(xy)坐标满足方程,

整理得.

当时,点P的轨迹为圆弧,所以不存在符合题意的两点.

当时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长.

当时,点P到椭圆两个焦点的距离之和为定值.

当时,点P到椭圆两个焦点的距离之

和为定值.

 

 

 

 


同步练习册答案