题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
天津精通高考复读学校数学教研组组长 么世涛
一、选择题 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用
代替
得
4.
5.
,
或
6.
7.略
8.

二、填空题:9.60; 10. 15:10:20 ; 11.
; 12.
;
13.0.74 ; 14. ①、
;②、圆;③.
提示:
9.
10.
,
,
11.
,
12.
,
,
,
,
13.
14.略
三、解答题
15. 解:(1)
.
(2)设抽取
件产品作检验,则
,
,得:
,即 
故至少应抽取8件产品才能满足题意.
16. 解:由题意得
,
,原式可化为
,
而
,
故原式=
.
17. 解:(1)显然
,连接
,∵
,
,
∴
.由已知
,∴
,
.
∵
∽
,
,
∴
即
.
∴
.
(2)
当且仅当
时,等号成立.此时
,即
为
的中点.于是由
,知平面
,
是其交线,则过
作
。
∴
就是
与平面
所成的角.由已知得
,
,
∴
,
,
.
(3) 设三棱锥
的内切球半径为
,则

∵
,
,
,
,
,
∴
.
18. 解: (1)
,
(2) ∵
,
∴当
时,
∴当
时,
,
∵
,
,
,
.
∴
的最大值为
或
中的最大者.
∵ 
∴ 当
时,
有最大值为
.
19.(1)解:∵函数
的图象过原点,
∴
即
,
∴
.
又函数
的图象关于点
成中心对称,
∴
,
.
(2)解:由题意有
即
,
即
,即
.
∴数列{
}是以1为首项,1为公差的等差数列.
∴
,即
. ∴
.
∴
,
,
,
.
(3)证明:当
时,

故
20. (1)解:∵
,又
,
∴
.
又∵
,且
∴
.
(2)解:由
,
,
猜想
(3)证明:用数学归纳法证明:
①当
时,
,猜想正确;
②假设
时,猜想正确,即
1°若
为正奇数,则
为正偶数,
为正整数,
2°若
为正偶数,则
为正整数,
,又
,且
所以
即当
时,猜想也正确
由①,②可知,
成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1.
即

2.
即 
3.
即
,也就是
,
4.先确定是哪两个人的编号与座位号一致,有
种情况,如编号为1的人坐1号座位,且编号为2的人坐2号座位有以下情形:
|