17.解:由已知得 .令.解得 .(Ⅰ)当时..在上单调递增 当时..随的变化情况如下表:0+00极大值极小值从上表可知.函数在上单调递增,在上单调递减,在上单调递增.知. 当时.函数没有极值. 当时.函数在处取得极大值.在处取得极小值. 查看更多

 

题目列表(包括答案和解析)

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

(本小题满分14分)

已知函数对于任意),都有式子成立(其中为常数).

(Ⅰ)求函数的解析式;

(Ⅱ)利用函数构造一个数列,方法如下:

对于给定的定义域中的,令,…,,…

在上述构造过程中,如果=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.

(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;

(ⅱ)是否存在一个实数,使得取定义域中的任一值作为,都可用上述方法构造出一个无穷数列?若存在,求出的值;若不存在,请说明理由;

(ⅲ)当时,若,求数列的通项公式.

查看答案和解析>>

(本小题满分14分)
已知函数对于任意),都有式子成立(其中为常数).
(Ⅰ)求函数的解析式;
(Ⅱ)利用函数构造一个数列,方法如下:
对于给定的定义域中的,令,…,,…
在上述构造过程中,如果=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;
(ⅱ)是否存在一个实数,使得取定义域中的任一值作为,都可用上述方法构造出一个无穷数列?若存在,求出的值;若不存在,请说明理由;
(ⅲ)当时,若,求数列的通项公式.

查看答案和解析>>

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
(1)求证:x与y的关系为
(2)设,定义函数,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为的等比数列,O为原点,令,是否存在点Q(1,m),使得?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
(1)求证:x与y的关系为
(2)设,定义函数,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为的等比数列,O为原点,令,是否存在点Q(1,m),使得?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>


同步练习册答案