8.设点O为所在平面 内一点.且.则O一定为的 A.外心 B.垂心 C.内心 D.重心 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,i,j分别是与x轴、y轴正方向同向的单位向量,O为坐标原点,设向量
OA
=2i+j,
OB
=3i+kj,若A,O,B三点不共线,且△AOB有一个内角为直角,则实数k的所有可能取值的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

在平面直角坐标系中,i,j分别是与x轴、y轴正方向同向的单位向量,O为坐标原点,设向量=2i+j,=3i+kj,若A,O,B三点不共线,且△AOB有一个内角为直角,则实数k的所有可能取值的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

在平面直角坐标系中,i,j分别是与x轴、y轴正方向同向的单位向量,O为坐标原点,设向量=2i+j,=3i+kj,若A,O,B三点不共线,且△AOB有一个内角为直角,则实数k的所有可能取值的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

在平面直角坐标系中,i,j分别是与x轴、y轴正方向同向的单位向量,O为坐标原点,设向量数学公式=2i+j,数学公式=3i+kj,若A,O,B三点不共线,且△AOB有一个内角为直角,则实数k的所有可能取值的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

在空间直角坐标系O-xyz中,
OP
=x
i
+y
j
+z
k
(其中
i
j
k
分别为x轴、y轴、z轴正方向上的单位向量).有下列命题:
①若
OP
=x
i
+y
j
+0
k
(x>0,y>0)
且|
OP
-4
j
|=|
OP
+2
i
|
,则
1
x
+
2
y
的最小值为2
2

②若
OP
=0
i
+y
j
+z
k
OQ
=0
i
+y1
j
+
k
,若向量
PQ
k
共线且|
PQ
|=|
OP
|,则动点P的轨迹是抛物线;
③若
OM
=a
i
+0
j
+0
k
OQ
=0
i
+b
j
+0
k
OR
=0
i
+0
j
+c
k
(abc≠0)
,则平面MQR内的任意一点A(x,y,z)的坐标必须满足关系式
x
a
+
y
b
+
z
c
=1;
④设
OP
=x
i
+y
j
+0
k
(x∈[0,4],y∈[-4,4])
OM
=0
i
+y1
j
+
k
(y1∈[-4,4])
ON
=x2
i
+0
j
+0
k
(x2∈[0,4])
,若向量
PM
j
PN
j
共线且|
PM
|=|
PN
|,则动点P的轨迹是双曲线的一部分.
其中你认为正确的所有命题的序号为
②③④
②③④

查看答案和解析>>

 

一、选择:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.证明:(1)由三视图可知,平面平面ABCD,

       设BC中点为E,连结AE、PE

      

      

       ,PB=PC

      

      

      

//

//

//

      

四边形CHFD为平行四边形,CH//DF

      

       又

       平面PBC

      

       ,DF平面PAD

       平面PAB

21.解:设

      

      

       对成立,

       依题有成立

       由于成立

          ①

       由于成立

         

       恒成立

          ②

       综上由①、②得

 

 

22.解:设列车从各站出发时邮政车厢内的邮袋数构成数列

   (1)

       在第k站出发时,前面放上的邮袋

       而从第二站起,每站放下的邮袋

       故

      

       即从第k站出发时,共有邮袋

   (2)

       当n为偶数时,

       当n为奇数时,

23.解:①

       上为增函数

       ②增函数

      

      

      

      

      

       同理可证

      

      

24.解:(1)假设存在满足题意

       则

      

       均成立

      

      

       成立

       满足题意

   (2)

      

      

      

      

       当n=1时,

      

       成立

       假设成立

       成立

       则

      

      

      

      

      

      

      

      

      

      

       即得成立

       综上,由数学归纳法可知