A. B. C. D. (一)必做题 查看更多

 

题目列表(包括答案和解析)

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

下列命题中正确的是(   

A.若两条直线都垂直于第三条直线,则这两条直线一定平行;

B.若两条直线和第三条直线成等角,则这两条直线平行;

C.与两条异面直线都垂直的直线,叫做异面直线的公垂线;

D.一直线与两平行线中的一条垂直,则必与另一条也垂直.

 

查看答案和解析>>

下列命题中正确的是(   

A.若两条直线都垂直于第三条直线,则这两条直线一定平行;

B.若两条直线和第三条直线成等角,则这两条直线平行;

C.与两条异面直线都垂直的直线,叫做异面直线的公垂线;

D.一直线与两平行线中的一条垂直,则必与另一条也垂直.

 

查看答案和解析>>

小明做了两道题,事件A为“做对第一个”,事件B为“做对第二个”,其中“做对第一个”与“做对第二个”的概率都是,下列说法正确的是(  )

    A.小明做对其中一个的概率为

    B.事件A与事件B为互斥事件

    C.A∩B={两个题都做对}

    D.事件A与事件B必然要发生一个

     

查看答案和解析>>

为了解某中学生遵守《中华人民共和国交通安全法》的情况,调查部门在该校进行了如下的随机调查,向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口时你是否闯过红灯?要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一个问题,否则就回答第二个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有调查者本人知道回答了哪一个问题,所以都如实地做了回答.结果被调查的800人(学号从1至800)中有240人回答了“是”.由此可以估计这800人中闯过红灯的人数是(  )

查看答案和解析>>

 

一、选择:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.证明:(1)由三视图可知,平面平面ABCD,

       设BC中点为E,连结AE、PE

      

      

       ,PB=PC

      

      

      

//

//

//

      

四边形CHFD为平行四边形,CH//DF

      

       又

       平面PBC

      

       ,DF平面PAD

       平面PAB

21.解:设

      

      

       对成立,

       依题有成立

       由于成立

          ①

       由于成立

         

       恒成立

          ②

       综上由①、②得

 

 

22.解:设列车从各站出发时邮政车厢内的邮袋数构成数列

   (1)

       在第k站出发时,前面放上的邮袋

       而从第二站起,每站放下的邮袋

       故

      

       即从第k站出发时,共有邮袋

   (2)

       当n为偶数时,

       当n为奇数时,

23.解:①

       上为增函数

       ②增函数

      

      

      

      

      

       同理可证

      

      

24.解:(1)假设存在满足题意

       则

      

       均成立

      

      

       成立

       满足题意

   (2)

      

      

      

      

       当n=1时,

      

       成立

       假设成立

       成立

       则

      

      

      

      

      

      

      

      

      

      

       即得成立

       综上,由数学归纳法可知