36(Ⅲ) 的数学希望为. 查看更多

 

题目列表(包括答案和解析)

18、某运动员射击一次所得环数X的分布如下:

现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ
(Ⅰ)求该运动员两次都掵中7环的概率;
(Ⅱ)求ξ的分布列.
(Ⅲ)求ξ的数学希望

查看答案和解析>>

某运动员射击一次所得环数X的分布列如下:

X

0~6

7

8

9

10

Y

0

0.2

0.3

0.3

0.2

现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.

(1)求该运动员两次都命中7环的概率;

(2)求ξ分布列;

(3)求ξ的数学希望.

 

 

查看答案和解析>>

精英家教网下表为某体育训练队跳高与跳远成绩的统计表,全队有队员40人,成绩分为1分至5分五个档次,例如表中所示:跳高成绩为4分的人数是:1+0+2+5+1=9人;跳远成绩为2分的人数是:0+5+4+0+1=10人;跳高成绩为4分且跳远成绩为2分的队员为5人.
将记载着跳高、跳远成绩的全部队员的姓名卡40张混合在一起,任取一张,记该卡片队员的跳高成绩为x,跳远成绩为y,设x,y为随机变量(注:没有相同姓名的队员)
(1)求m+n的值;
(2)求x=4的概率及x≥3且y=5的概率;
(3)若y的数学期望为
10540
,求m,n的值.

查看答案和解析>>

有A,B,C,D四个城市,它们各有一个著名的旅游点依此记为a,b,c,d.把A,B,C,D和a,b,c,d分别写成左、右两列,现在一名旅游爱好者随机用4条线把左右全部连接起来,构成“一一对应”,如果某个旅游点是与该旅游点所在的城市相连的(比如A与a相连)就得2分,否则就得0分;则该爱好者得分的数学期望为
2分
2分

查看答案和解析>>

11、某投篮游戏规定:每轮至多投三次,直到首次命中为止.第一次就投中,得8分;第一次不中且第二次投中,得6分;前两次均不中且第三次投中,得4分;三次均不中,得0分.若某同学每次投中的概率为0.5,则他每轮游戏的得分X的数学期望为
6

查看答案和解析>>


同步练习册答案