题目列表(包括答案和解析)
设
,
.
(1)当
时,求曲线
在
处的切线方程;
(2)如果存在
,使得
成立,求满足上述条件的最大整数
;
(3)如果对任意的
,都有
成立,求实数
的取值范围.
【解析】(1)求出切点坐标和切线斜率,写出切线方程;(2)存在
,
转化
解决;(3)任意的
,都有
成立即
恒成立,等价于
恒成立
关于x1,x2,x3的齐次线性方程组
的系数矩阵记为A,且该方程组存在非零解,若存在三阶矩阵B≠O,使得AB=O,(O表示零矩阵,即所有元素均为0的矩阵;|B|表示行列式B的值,该行列式中元素与矩阵B完全相同)则
A.λ=-2,且|B|=0
B.λ=-2,且|B|≠0
C.λ=1,且|B|≠0
D.λ=1,且|B|=0
|
设椭圆
:
(
)的一个顶点为
,
,
分别是椭圆的左、右焦点,离心率
,过椭圆右焦点
的直线
与椭圆
交于
,
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
,若存在,求出直线
的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为
,即
又因为
,得到
,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合
得到结论。
解:(1)椭圆的顶点为
,即![]()
,解得
,
椭圆的标准方程为
--------4分
(2)由题可知,直线
与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线
为
,且
,
.
由
得
, ----------7分
,
,
![]()
=
所以
,
----------10分
故直线
的方程为
或
即
或![]()
设双曲线
的两个焦点分别为
、
,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点
能否作出直线
,使
与双曲线
交于
、
两点,且
,若存在,求出直线方程,若不存在,说明理由.
【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.
(2)设直线l的方程为
,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理
表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com