题目列表(包括答案和解析)
已知曲线
上动点
到定点
与定直线
的距离之比为常数
.
(1)求曲线
的轨迹方程;
(2)若过点
引曲线C的弦AB恰好被点
平分,求弦AB所在的直线方程;
(3)以曲线
的左顶点
为圆心作圆
:
,设圆
与曲线
交于点
与点
,求
的最小值,并求此时圆
的方程.
【解析】第一问利用(1)过点
作直线
的垂线,垂足为D.
代入坐标得到
第二问当斜率k不存在时,检验得不符合要求;
当直线l的斜率为k时,
;,化简得
![]()
第三问点N与点M关于X轴对称,设
,, 不妨设
.
由于点M在椭圆C上,所以
.
由已知
,则
,
由于
,故当
时,
取得最小值为
.
计算得,
,故
,又点
在圆
上,代入圆的方程得到
.
故圆T的方程为:![]()
设
和
是抛物线
上的两个动点,且在
和
处的抛物线切线相互垂直,已知由
及抛物线
的顶点所成的三角形重心的轨迹也是一抛物线,记为
.对
重复以上过程,又得一抛物线
,余类推.设如此得到抛物线的序列为
,
,
,若抛物线
的方程为
,经专家计算得,
,
,
,
,
.
则
.:Z_x
(1)求曲线C的方程;
(2)已知点A(5,0)、B(1,0),过点A作直线交曲线C于两个不同的点P、Q,△BPQ的面积S是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.
(文)如图b所示,线段AB过x轴正半轴上一点M(m,0)(m>0),端点A,B到x轴距离之积为2m,以x轴为对称轴、过A,O,B三点作抛物线.
(1)求抛物线方程;
(2)若tan∠AOB=-1,求m的取值范围.
![]()
第21题图
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com