如图.椭圆中心在坐标原点.为左焦点.为上顶点.为右顶点.当时.此类椭圆被称为“黄金椭圆 .类比“黄金椭圆 可推算出“黄金双曲线 的离心率的值为: 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,椭圆中心在坐标原点,F为左焦点,当
FB
AB
时,其离心率为
5
-1
2
,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于
 

查看答案和解析>>

精英家教网如图,椭圆中心在坐标原点,焦点在坐标轴上,A、B是顶点,F是左焦点;当BF⊥AB时,此类椭圆称为“黄金椭圆”,其离心率为
5
-1
2
.类比“黄金椭圆”可推算出“黄金双曲线”的离心率e=
 

查看答案和解析>>

如图,椭圆中心在坐标原点,F为左焦点,当
FB
AB
时,其离心率为
5
-1
2
,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为(  )

查看答案和解析>>

如图,椭圆中心在坐标原点,F为左焦点,A为右顶点,B为上顶点,当时,其离心率为,此类椭圆被称为“黄金椭圆”。类比黄金椭圆,可推算出“黄金双曲线”的离心率e等于   

查看答案和解析>>

如图,椭圆中心在坐标原点,点F为左焦点,点B为短轴的上顶点,点A为长轴的右顶点.当时,椭圆被称为“黄金椭圆”,则“黄金椭圆”的离心率e等于( )

A.
B.
C.
D.

查看答案和解析>>

一、选择题

DDDCC         CDAAB

二、填空题

11、           12、        13、     14、17    0     15、②③

三、解答题

16、⑴

         

      

 

17、(1),其定义域为.

.……………………………………………………2′

时,时,故当且仅当时,.   6′

(2)

由(1)知,     …………………………9′

…………………………………………12′′18、(1)符合二项分布

0

1

2

3

4

5

6

……6′

(2)可取15,16,18.

*表示胜5场负1场,;………………………………7′

表示胜5场平1场,;………………………………8′

*表示6场全胜,.……………………………………………9′

.………………………………………………………………12(

19、解:(1)以所在直线为轴,以所在直线为轴,以所在直线为轴,建立如图所示的空间直角坐标系,由题意可知………2′

                   的坐标为     

,              

                      而

的公垂线…………………………………………………………4′

(2)令面的法向量

,则,即而面的法向量

……6′ ∴二面角的大小为.……8′

(3)    面的法向量为     到面的距离为

     即到面的距离为.…………12′

20、解:(1)假设存在,使,则,同理可得,以此类推有,这与矛盾。则不存在,使.……3分

(2)∵当时,

,则

相反,而,则.以此类推有:

;……7分

(3)∵当时,,则

 …9分

 ()……10分

.……12分

21、解(1)设     

          

①-②得

   ……………………2′

直线的方程是  整理得………………4′

(2)联立解得

的方程为联立消去,整理得

………………………………6′

 

          又

…………………………………………8′

(3)直线的方程为,代入,得

………………………………………………10′

三点共线,三点共线,且在抛物线的内部。

故由可推得

  同理可得:

………………………………14′

 

 


同步练习册答案