题目列表(包括答案和解析)
(本小题满分12分)某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.
(本小题满分12分)某休闲会馆拟举行“五一”应祝活动,每位来宾交30元的入场费,可参加一次抽奖活动. 抽奖活动规则是:从一个装有分值分别为1,2,3,4,5,6的六个相同小球的抽奖箱中,有放回的抽取两次,每次抽取一个球,规定:若抽得两球的分值和为12分,则获得价值为m元的礼品;若抽得两球的分值和为11分或10分,则获得价值为100元的礼品;若抽得两球的分值和低于10分,则不获奖. (1)求每位会员获奖的概率;(2)假设会馆这次活动打算即不赔钱也不赚钱,则m应为多少元?
(本小题满分12分)某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是
,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用
表示获奖的人数,求
的分布列及
.
(本小题满分12分)
某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.
(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是
,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用
表示获奖的人数,求
的分布列及
.
(本小题满分12分)
某公司在“2010年上海世博会知识宣传”活动中进行抽奖活动,抽奖规则是:在一个盒子中装有8张大小相同的精美卡片,其中2张印有“世博会欢迎您”字样,2张印有“世博会会徽”图案,4张印有“海宝”(世博会吉祥物)图案,现从盒子里无放回的摸取卡片,找出印有“海宝”图案的卡片表示中奖且停止摸卡。
(Ⅰ)求最多摸两次中奖的概率;
(Ⅱ)用
表示摸卡的次数,求
的分布列和数学期望。
一.选择题:



二、填空题: 13.
14.
15.
16. 
三.解答题
17.解:⑴f(x)= sinxcosx+
+
cos2x =
sin(2x+
)+
T=π,2 kπ-
≤2x+
≤2 kπ+
,k∈Z,
最小正周期为π,单调增区间[kπ-
,kπ+
],k∈Z.
⑵由sin(2A+
)=0,
<2A+
<
,
∴2A+
=π或2π,∴A=
或
18. 解:(1)
(2)设各等奖的奖金数为ξ则
ξ
5000
1000
20
0
P
0.001
0.009
0.09
0.9
∴Eξ=5+9+1.8+0=15.8(元)
19.解:(1)
平面
∵二面角
为直二面角,且
,
平面
平面
.
(2)连接
与高
交于
,连接
是边长为2的正方形,
,
二平面
,由三垂线定理逆定理得
是二面角
的平面角
由(1)
平面
,
.
在
中,
∴在
中,
故二面角
等于
.
(2)可用向量法
20. 解:(1)因
故
是公比为
的等比数列,且
故
.
(2)由
得



注意到
,可得
,即
记数列
的前
项和为
,则
两式相减得:

故
从而
.
21.解:(1)由
得
∴椭圆
的方程为:
.
(2)设直线
的方程为:
由
得


由此得
. ①
设
与椭圆
的交点为
,则
由
得
,整理得
,整理得
时,上式不成立,
②
由式①、②得
或
∴
取值范围是
.
22.,解(1)
故
在
递减
(2)
记

再令 
在
上递增
,从而
故
在
上也单调递增

湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com