题目列表(包括答案和解析)
(四川延考理1)集合
,
的子集中,含有元素
的子集共有
(A)2个 (B)4个 (C)6个 (D)8个
(四川延考理1)集合
,
的子集中,含有元素
的子集共有
(A)2个 (B)4个 (C)6个 (D)8个
(四川延考文22)设函数
.
(Ⅰ)求
的单调区间和极值;
(Ⅱ)若当
时,
,求
的最大值.
(四川延考理22)设函数
。
(Ⅰ)求
的单调区间和极值;
(Ⅱ)若对一切
,
,求
的最大值。
(四川延考文18)一条生产线上生产的产品按质量情况分为三类:
类、
类、
类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有
类产品或2件都是
类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为
类品,
类品和
类品的概率分别为
,
和
,且各件产品的质量情况互不影响.
(Ⅰ)求在一次抽检后,设备不需要调整的概率;
(Ⅱ)若检验员一天抽检3次,求一天中至少有一次需要调整设备的概率.
1. 构造向量
,
,所以
,
.由数量积的性质
,得
,即
的最大值为2.
2. ∵
,令
得
,所以
,当
时,
,当
时,
,所以当
时,
.
3.∵
,∴
,
,又
,∴
,则
,所以周期
.作出
在
上的图象知:若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,∴
;若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,
∴
.
4. 不等式
(
)表示的区域是如图所示的菱形的内部,
∵
,
当
,点
到点
的距离最大,此时
的最大值为
;
当
,点
到点
的距离最大,此时
的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有
种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有
种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有
种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为
.
6. ∵
,∴
,
设
,
,则
.
作出该不等式组表示的平面区域(图中的阴影部分
).
令
,则
,它表示斜率为
的一组平行直线,易知,当它经过点
时,
取得最小值.
解方程组
,得
,∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com