(文)∵当时..∴数列为等差数列.且公差. 查看更多

 

题目列表(包括答案和解析)

(文)已知函数f(x)=2sinx+3tanx.项数为27的等差数列{an}满足an∈(-
π
2
π
2
)
,且公差d≠0.若f(a1)+f(a2)+…+f(a27)=0,则当k值为
13
13
时有f(ak)=0.

查看答案和解析>>

(文)已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=ax(a>0,a≠1)的图象上,其中{an}是以1为首项,2为公差的等差数列.
(1)求数列{an}的通项公式,并证明数列{bn}是等比数列;
(2)设数列{bn}的前n项的和Sn,求
(3)设Qn(an,0),当时,问△OPnQn的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

(文)已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=ax(a>0,a≠1)的图象上,其中{an}是以1为首项,2为公差的等差数列.
(1)求数列{an}的通项公式,并证明数列{bn}是等比数列;
(2)设数列{bn}的前n项的和Sn,求
(3)设Qn(an,0),当时,问△OPnQn的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

(文)已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=ax(a>0,a≠1)的图象上,其中{an}是以1为首项,2为公差的等差数列.
(1)求数列{an}的通项公式,并证明数列{bn}是等比数列;
(2)设数列{bn}的前n项的和Sn,求
(3)设Qn(an,0),当时,问△OPnQn的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a2+b3=a3+b2=7.
(1)求{an},{bn}的通项公式;
(2)记cn=an-2010,n∈N*,An为数列{cn}的前n项和,当n为多少时An取得最大值或最小值?
(3)(理)是否存在正数K,使得(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥K
2n+1
对一切n∈N*均成立,若存在,求出K的最大值,若不存在,说明理由.
(4)(文)求数列{
an
bn
}
的前n项和Sn

查看答案和解析>>


同步练习册答案