解关于的不等式.分析:本题考查一元一次不等式与一元二次不等式的解法.因为含有字母系数.所以还考查分类思想.解:分以下情况讨论 查看更多

 

题目列表(包括答案和解析)

命题p:关于的不等式的解集为

命题q:函数为增函数.

 分别求出符合下列条件的实数的取值范围.

   (1)p、q至少有一个是真命题;(2)p∨q是真命题且p∧q是假命题.

【解析】本试题主要考查了函数的单调性,不等式的解集,以及命题的真值判定的综合运用。

 

查看答案和解析>>

命题p:关于的不等式的解集为

命题q:函数为增函数.

 分别求出符合下列条件的实数的取值范围.

   (1)p、q至少有一个是真命题;(2)p∨q是真命题且p∧q是假命题.

【解析】本试题主要考查了函数的单调性,不等式的解集,以及命题的真值判定的综合运用。

 

查看答案和解析>>

命题p:关于的不等式的解集为

命题q:函数为增函数.

 分别求出符合下列条件的实数的取值范围.

   (1)p、q至少有一个是真命题;(2)p∨q是真命题且p∧q是假命题.

【解析】本试题主要考查了函数的单调性,不等式的解集,以及命题的真值判定的综合运用。

 

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>


同步练习册答案