(2)若.且对任意正整数.有..记..比较与的大小关系.并给出证明, 查看更多

 

题目列表(包括答案和解析)

为正整数,若,且对满足条件的任意a,b,c都有

时,的最大值为                     ;若

,且对满足条件的任意都有

,设的最大值为,记

,则               

查看答案和解析>>

将正整数1,2,3,4,…,n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算各行和各列中的任意两个数a,b(a>b)的比值
a
b
,称这些比值中的最小值为这个数表的“特征值”.
(1)当n=2时,试写出排成的各个数表中所有可能的不同“特征值”;
(2)若aij表示某个n行n列数表中第i行第j列的数(1≤i≤n,1≤j≤n),且满足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
请分别写出n=3,4,5时数表的“特征值”,并由此归纳此类数表的“特征值”(不必证明);
(3)对于由正整数1,2,3,4,…,n2排成的n行n列的任意数表,若某行(或列)中,存在两个数属于集合{n2-n+1,n2-n+2,…,n2},记其“特征值”为λ,求证:λ≤
n+1
n

查看答案和解析>>

在数列{an}中,a1=2,且(n∈N*,且n≥2),设
(Ⅰ)证明:数列{bn}是等差数列,并求其通项公式;
(Ⅱ)记数列的前n项和为Sn,若对于任意的正整数n恒有m2-≤Sn,求实数m的取值范围。

查看答案和解析>>

已知数列{}中,(t>0且t≠1).若是函数的一个极值点.
(Ⅰ)证明数列{+1}是等比数列,并求数列{}的通项公式;
(Ⅱ)记,当t=2时,数列{bn}的前n项和为,求使>2008的n的最小值;
(Ⅲ)当t=2时,求证:对于任意的正整数n,有

查看答案和解析>>

已知数列{an}中,a1=t,a2=t2(t>0且t≠1).若x=
t
是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(Ⅰ)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(Ⅱ)记bn=2(1-
1
an
)
,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(Ⅲ)当t=2时,求证:对于任意的正整数n,有 
n
k=1
2k
(ak+1)(ak+1+1)
1
3

查看答案和解析>>


同步练习册答案