C.金属棒的速度为v时.所受的按培力大小为F= D.电阻R上产生的总热量等于金属棒重力势能的减少 图2 查看更多

 

题目列表(包括答案和解析)

两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻。将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图所示。除电阻R外其余电阻不计。现将金属棒从弹簧原长位置由静止释放,则

A.释放瞬间金属棒的加速度等于重力加速度

 B.金属棒向下运动时,流过电阻R的电流方向为ab

C.金属棒的速度为v时,所受的按培力大小为F= 

D.电阻R上产生的总热量等于金属棒重力势能的减少

查看答案和解析>>

两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻。将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图所示。除电阻R外其余电阻不计。现将金属棒从弹簧原长位置由静止释放,则

A.释放瞬间金属棒的加速度等于重力加速度g

B.金属棒向下运动时,流过电阻R的电流方向为ab

C.金属棒的速度为v时,所受的按培力大小为F=

D.电阻R上产生的总热量等于金属棒重力势能的减少

查看答案和解析>>

两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻.将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图所示.除电阻R外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则

A.释放瞬间金属棒的加速度等于重力加速度g

B.金属棒向下运动时,流过电阻R的电流方向为ab

C.金属棒的速度为v时,所受的按培力大小为F

D.电阻R上产生的总热量等于金属棒重力势能的减少

查看答案和解析>>

 两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻。将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图所示。除电阻R外其余电阻不计。现将金属棒从弹簧原长位置由静止释放,则(   )

A.释放瞬间金属棒的加速度等于重力加速度g

B.金属棒向下运动时,流过电阻R的电流方向为ab

C.金属棒的速度为v时,所受的按培力大小为F=              

D.电阻R上产生的总热量等于金属棒重力势能的减少                 

 

查看答案和解析>>

第八部分 静电场

第一讲 基本知识介绍

在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。

如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。

一、电场强度

1、实验定律

a、库仑定律

内容;

条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。

b、电荷守恒定律

c、叠加原理

2、电场强度

a、电场强度的定义

电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。

b、不同电场中场强的计算

决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出——

⑴点电荷:E = k

结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——

⑵均匀带电环,垂直环面轴线上的某点P:E = ,其中r和R的意义见图7-1。

⑶均匀带电球壳

内部:E = 0

外部:E = k ,其中r指考察点到球心的距离

如果球壳是有厚度的的(内径R1 、外径R2),在壳体中(R1<r<R2):

E =  ,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔即为图7-2中虚线以内部分的总电量…〕。

⑷无限长均匀带电直线(电荷线密度为λ):E = 

⑸无限大均匀带电平面(电荷面密度为σ):E = 2πkσ

二、电势

1、电势:把一电荷从P点移到参考点P0时电场力所做的功W与该电荷电量q的比值,即

U = 

参考点即电势为零的点,通常取无穷远或大地为参考点。

和场强一样,电势是属于场本身的物理量。W则为电荷的电势能。

2、典型电场的电势

a、点电荷

以无穷远为参考点,U = k

b、均匀带电球壳

以无穷远为参考点,U = k ,U = k

3、电势的叠加

由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。

4、电场力对电荷做功

WAB = q(UA - UB)= qUAB 

三、静电场中的导体

静电感应→静电平衡(狭义和广义)→静电屏蔽

1、静电平衡的特征可以总结为以下三层含义——

a、导体内部的合场强为零;表面的合场强不为零且一般各处不等,表面的合场强方向总是垂直导体表面。

b、导体是等势体,表面是等势面。

c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。

2、静电屏蔽

导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。

四、电容

1、电容器

孤立导体电容器→一般电容器

2、电容

a、定义式 C = 

b、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容

⑴平行板电容器 C =  =  ,其中ε为绝对介电常数(真空中ε0 =  ,其它介质中ε= ),εr则为相对介电常数,εr =  

⑵柱形电容器:C = 

⑶球形电容器:C = 

3、电容器的连接

a、串联  = +++ … +

b、并联 C = C1 + C2 + C3 + … + Cn 

4、电容器的能量

用图7-3表征电容器的充电过程,“搬运”电荷做功W就是图中阴影的面积,这也就是电容器的储能E ,所以

E = q0U0 = C = 

电场的能量。电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E表示。

对平行板电容器 E = E2 

认为电场能均匀分布在电场中,则单位体积的电场储能 w = E2 。而且,这以结论适用于非匀强电场。

五、电介质的极化

1、电介质的极化

a、电介质分为两类:无极分子和有极分子,前者是指在没有外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H2 、O2 、N2和CO2),后者则反之(如气态的H2O 、SO2和液态的水硝基笨)

b、电介质的极化:当介质中存在外电场时,无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列,如图7-4所示。

2、束缚电荷、自由电荷、极化电荷与宏观过剩电荷

a、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负电和正电,但这些电荷并不能自由移动,因此称为束缚电荷,除了电介质,导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷。事实上,导体中存在束缚电荷与自由电荷,绝缘体中也存在束缚电荷和自由电荷,只是它们的比例差异较大而已。

b、极化电荷是更严格意义上的束缚电荷,就是指图7-4中电介质两端显现的电荷。而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷。宏观过剩电荷与极化电荷的重要区别是:前者能够用来冲放电,也能用仪表测量,但后者却不能。

第二讲 重要模型与专题

一、场强和电场力

【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。

【模型分析】这是一个叠加原理应用的基本事例。

如图7-5所示,在球壳内取一点P ,以P为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS1和ΔS2 ,设球面的电荷面密度为σ,则这两个面元在P点激发的场强分别为

ΔE1 = k

ΔE2 = k

为了弄清ΔE1和ΔE2的大小关系,引进锥体顶部的立体角ΔΩ ,显然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它们的方向是相反的,故在P点激发的合场强为零。

同理,其它各个相对的面元ΔS3和ΔS4 、ΔS5和ΔS6  激发的合场强均为零。原命题得证。

【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。

【解析】如图7-6所示,在球面上的P处取一极小的面元ΔS ,它在球心O点激发的场强大小为

ΔE = k ,方向由P指向O点。

无穷多个这样的面元激发的场强大小和ΔS激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x方向、y方向上的对称性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ为面元在xoy平面的投影,设为ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直边界线所在的平面。

〖学员思考〗如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?

〖推荐解法〗将半球面看成4个球面,每个球面在x、y、z三个方向上分量均为 kπσ,能够对称抵消的将是y、z两个方向上的分量,因此ΣE = ΣEx …

〖答案〗大小为kπσ,方向沿x轴方向(由带正电的一方指向带负电的一方)。

【物理情形2】有一个均匀的带电球体,球心在O点,半径为R ,电荷体密度为ρ ,球体内有一个球形空腔,空腔球心在O′点,半径为R′,= a ,如图7-7所示,试求空腔中各点的场强。

【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。

将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P ,设 = r1 , = r2 ,则大球激发的场强为

E1 = k = kρπr1 ,方向由O指向P

“小球”激发的场强为

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵从平行四边形法则,ΣE的方向如图。又由于矢量三角形PE1ΣE和空间位置三角形OP O′是相似的,ΣE的大小和方向就不难确定了。

【答案】恒为kρπa ,方向均沿O → O′,空腔里的电场是匀强电场。

〖学员思考〗如果在模型2中的OO′连线上O′一侧距离O为b(b>R)的地方放一个电量为q的点电荷,它受到的电场力将为多大?

〖解说〗上面解法的按部就班应用…

〖答〗πkρq〔?〕。

二、电势、电量与电场力的功

【物理情形1】如图7-8所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心跟环面垂直的轴线上有P点, = r ,以无穷远为参考点,试求P点的电势U

【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段ΔL ,它在P点形成的电势

ΔU = k

环共有段,各段在P点形成的电势相同,而且它们是标量叠加。

【答案】UP = 

〖思考〗如果上题中知道的是环的总电量Q ,则UP的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?

〖答〗UP =  ;结论不会改变。

〖再思考〗将环换成半径为R的薄球壳,总电量仍为Q ,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?

〖解说〗(1)球心电势的求解从略;

球内任一点的求解参看图7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它们代数叠加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成电势的叠加 ΣU = 2RkσΣΔΩ

注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr),但作为对顶的锥角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心电势的求解和〖思考〗相同;

球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。

〖答〗(1)球心、球内任一点的电势均为k ;(2)球心电势仍为k ,但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)。

【相关应用】如图7-9所示,球形导体空腔内、外壁的半径分别为R1和R2 ,带有净电量+q ,现在其内部距球心为r的地方放一个电量为+Q的点电荷,试求球心处的电势。

【解析】由于静电感应,球壳的内、外壁形成两个带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果。

根据静电感应的尝试,内壁的电荷量为-Q ,外壁的电荷量为+Q+q ,虽然内壁的带电是不均匀的,根据上面的结论,其在球心形成的电势仍可以应用定式,所以…

【答案】Uo = k - k + k 

〖反馈练习〗如图7-10所示,两个极薄的同心导体球壳A和B,半径分别为RA和RB ,现让A壳接地,而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势。

〖解说〗这是一个更为复杂的静电感应情形,B壳将形成图示的感应电荷分布(但没有净电量),A壳的情形未画出(有净电量),它们的感应电荷分布都是不均匀的。

此外,我们还要用到一个重要的常识:接地导体(A壳)的电势为零。但值得注意的是,这里的“为零”是一个合效果,它是点电荷q 、A壳、B壳(带同样电荷时)单独存在时在A中形成的的电势的代数和,所以,当我们以球心O点为对象,有

UO = k + k + k = 0

QB应指B球壳上的净电荷量,故 QB = 0

所以 QA = -q

☆学员讨论:A壳的各处电势均为零,我们的方程能不能针对A壳表面上的某点去列?(答:不能,非均匀带电球壳的球心以外的点不能应用定式!)

基于刚才的讨论,求B的电势时也只能求B的球心的电势(独立的B壳是等势体,球心电势即为所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒,每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A是Δabc的中心,点B则与A相对bc棒对称,且已测得它们的电势分别为UA和UB 。试问:若将ab棒取走,A、B两点的电势将变为多少?

【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前面的定式不能直接应用。若用元段分割→叠加,也具有相当的困难。所以这里介绍另一种求电势的方法。

每根细棒的电荷分布虽然复杂,但相对各自的中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相同。这就意味着:①三棒对A点的电势贡献都相同(可设为U1);②ab棒、ac棒对B点的电势贡献相同(可设为U2);③bc棒对A、B两点的贡献相同(为U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是绝缘体,电荷分布不变,故电势贡献不变,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 

〖模型变换〗正四面体盒子由彼此绝缘的四块导体板构成,各导体板带电且电势分别为U1 、U2 、U3和U4 ,则盒子中心点O的电势U等于多少?

〖解说〗此处的四块板子虽然位置相对O点具有对称性,但电量各不相同,因此对O点的电势贡献也不相同,所以应该想一点办法——

我们用“填补法”将电量不对称的情形加以改观:先将每一块导体板复制三块,作成一个正四面体盒子,然后将这四个盒子位置重合地放置——构成一个有四层壁的新盒子。在这个新盒子中,每个壁的电量将是完全相同的(为原来四块板的电量之和)、电势也完全相同(为U1 + U2 + U3 + U4),新盒子表面就构成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为

U′= U1 + U2 + U3 + U4 

最后回到原来的单层盒子,中心电势必为 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆学员讨论:刚才的这种解题思想是否适用于“物理情形2”?(答:不行,因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等。)

〖反馈练习〗电荷q均匀分布在半球面ACB上,球面半径为R ,CD为通过半球顶点C和球心O的轴线,如图7-12所示。P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP ,试求Q点的电势UQ 。

〖解说〗这又是一个填补法的应用。将半球面补成完整球面,并令右边内、外层均匀地带上电量为q的电荷,如图7-12所示。

从电量的角度看,右半球面可以看作不存在,故这时P、Q的电势不会有任何改变。

而换一个角度看,P、Q的电势可以看成是两者的叠加:①带电量为2q的完整球面;②带电量为-q的半球面。

考查P点,UP = k + U半球面

其中 U半球面显然和为填补时Q点的电势大小相等、符号相反,即 U半球面= -UQ 

以上的两个关系已经足以解题了。

〖答〗UQ = k - UP 。

【物理情形3】如图7-13所示,A、B两点相距2L ,圆弧是以B为圆心、L为半径的半圆。A处放有电量为q的电荷,B处放有电量为-q的点电荷。试问:(1)将单位正电荷从O点沿移到D点,电场力对它做了多少功?(2)将单位负电荷从D点沿AB的延长线移到无穷远处去,电场力对它做多少功?

【模型分析】电势叠加和关系WAB = q(UA - UB)= qUAB的基本应用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功与电势的关系即可。

【答案】(1);(2) 

【相关应用】在不计重力空间,有A、B两个带电小球,电量分别为q1和q2 ,质量分别为m1和m2 ,被固定在相距L的两点。试问:(1)若解除A球的固定,它能获得的最大动能是多少?(2)若同时解除两球的固定,它们各自的获得的最大动能是多少?(3)未解除固定时,这个系统的静电势能是多少?

【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算,另启用动量守恒关系;第(3)问是在前两问基础上得出的必然结论…(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统,而非单纯属于场中物体——这在过去一直是被忽视的。在两个点电荷的环境中,我们通常说“两个点电荷的势能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 

〖思考〗设三个点电荷的电量分别为q1 、q2和q3 ,两两相距为r12 、r23和r31 ,则这个点电荷系统的静电势能是多少?

〖解〗略。

〖答〗k(++)。

〖反馈应用〗如图7-14所示,三个带同种电荷的相同金属小球,每个球的质量均为m 、电量均为q ,用长度为L的三根绝缘轻绳连接着,系统放在光滑、绝缘的水平面上。现将其中的一根绳子剪断,三个球将开始运动起来,试求中间这个小球的最大速度。

〖解〗设剪断的是1、3之间的绳子,动力学分析易知,2球获得最大动能时,1、2之间的绳子与2、3之间的绳子刚好应该在一条直线上。而且由动量守恒知,三球不可能有沿绳子方向的速度。设2球的速度为v ,1球和3球的速度为v′,则

动量关系 mv + 2m v′= 0

能量关系 3k = 2 k + k + mv2 + 2m

解以上两式即可的v值。

〖答〗v = q 

三、电场中的导体和电介质

【物理情形】两块平行放置的很大的金属薄板A和B,面积都是S ,间距为d(d远小于金属板的线度),已知A板带净电量+Q1 ,B板带尽电量+Q2 ,且Q2<Q1 ,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。

【模型分析】由于静电感应,A、B两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄,但内部合场强为零的结论还是存在的);这里应注意金属板“很大”的前提条件,它事实上是指物理无穷大,因此,可以应用无限大平板的场强定式。

为方便解题,做图7-15,忽略边缘效应,四个面的电荷分布应是均匀的,设四个面的电荷面密度分别为σ1 、σ2 、σ3和σ4 ,显然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板内部空间场强为零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板内部空间场强为零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四个面的电荷密度,Ⅰ、Ⅱ、Ⅲ空间的场强就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外侧电量、A板内侧电量,B板内侧电量?、B板外侧电量;(2)A板外侧空间场强2πk,方向垂直A板向外,A、B板之间空间场强2πk,方向由A垂直指向B,B板外侧空间场强2πk,方向垂直B板向外;(3)A、B两板的电势差为2πkd,A板电势高。

〖学员思考〗如果两板带等量异号的净电荷,两板的外侧空间场强等于多少?(答:为零。)

〖学员讨论〗(原模型中)作为一个电容器,它的“电量”是多少(答:)?如果在板间充满相对介电常数为εr的电介质,是否会影响四个面的电荷分布(答:不会)?是否会影响三个空间的场强(答:只会影响Ⅱ空间的场强)?

〖学员讨论〗(原模型中)我们是否可以求出A、B两板之间的静电力?〔答:可以;以A为对象,外侧受力·(方向相左),内侧受力·(方向向右),它们合成即可,结论为F = Q1Q2 ,排斥力。〕

【模型变换】如图7-16所示,一平行板电容器,极板面积为S ,其上半部为真空,而下半部充满相对介电常数为εr的均匀电介质,当两极板分别带上+Q和?Q的电量后,试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷。

【解说】电介质的充入虽然不能改变内表面的电量总数,但由于改变了场强,故对电荷的分布情况肯定有影响。设真空部分电量为Q1 ,介质部分电量为Q2 ,显然有

Q1 + Q2 = Q

两板分别为等势体,将电容器看成上下两个电容器的并联,必有

U1 = U2   =  ,即  = 

解以上两式即可得Q1和Q2 

场强可以根据E = 关系求解,比较常规(上下部分的场强相等)。

上下部分的电量是不等的,但场强居然相等,这怎么解释?从公式的角度看,E = 2πkσ(单面平板),当k 、σ同时改变,可以保持E不变,但这是一种结论所展示的表象。从内在的角度看,k的改变正是由于极化电荷的出现所致,也就是说,极化电荷的存在相当于在真空中形成了一个新的电场,正是这个电场与自由电荷(在真空中)形成的电场叠加成为E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

请注意:①这里的σ′和Q′是指极化电荷的面密度和总量;② E = 4πkσ的关系是由两个带电面叠加的合效果。

【答案】(1)真空部分的电量为Q ,介质部分的电量为Q ;(2)整个空间的场强均为 ;(3)Q 。

〖思考应用〗一个带电量为Q的金属小球,周围充满相对介电常数为εr的均匀电介质,试求与与导体表面接触的介质表面的极化电荷量。

〖解〗略。

〖答〗Q′= Q 。

四、电容器的相关计算

【物理情形1】由许多个电容为C的电容器组成一个如图7-17所示的多级网络,试问:(1)在最后一级的右边并联一个多大电容C′,可使整个网络的A、B两端电容也为C′?(2)不接C′,但无限地增加网络的级数,整个网络A、B两端的总电容是多少?

【模型分析】这是一个练习电容电路简化基本事例。

第(1)问中,未给出具体级数,一般结论应适用特殊情形:令级数为1 ,于是

 +  =  解C′即可。

第(2)问中,因为“无限”,所以“无限加一级后仍为无限”,不难得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相关模型】在图7-18所示的电路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,试求A、B之间的等效电容。

【解说】对于既非串联也非并联的电路,需要用到一种“Δ→Y型变换”,参见图7-19,根据三个端点之间的电容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了这样的定式后,我们便可以进行如图7-20所示的四步电路简化(为了方便,电容不宜引进新的符号表达,而是直接将变换后的量值标示在图中)——

【答】约2.23μF 。

【物理情形2】如图7-21所示的电路中,三个电容器完全相同,电源电动势ε1 = 3.0V ,ε2 = 4.5V,开关K1和K2接通前电容器均未带电,试求K1和K2接通后三个电容器的电压Uao 、Ubo和Uco各为多少。

【解说】这是一个考查电容器电路的基本习题,解题的关键是要抓与o相连的三块极板(俗称“孤岛”)的总电量为零。

电量关系:++= 0

电势关系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展应用】如图7-22所示,由n个单元组成的电容器网络,每一个单元由三个电容器连接而成,其中有两个的电容为3C ,另一个的电容为3C 。以a、b为网络的输入端,a′、b′为输出端,今在a、b间加一个恒定电压U ,而在a′b′间接一个电容为C的电容器,试求:(1)从第k单元输入端算起,后面所有电容器储存的总电能;(2)若把第一单元输出端与后面断开,再除去电源,并把它的输入端短路,则这个单元的三个电容器储存的总电能是多少?

【解说】这是一个结合网络计算和“孤岛现象”的典型事例。

(1)类似“物理情形1”的计算,可得 C = Ck = C

所以,从输入端算起,第k单元后的电压的经验公式为 Uk = 

再算能量储存就不难了。

(2)断开前,可以算出第一单元的三个电容器、以及后面“系统”的电量分配如图7-23中的左图所示。这时,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤岛”。此后,电容器的相互充电过程(C3类比为“电源”)满足——

电量关系:Q1′= Q3

          Q2′+ Q3′= 

电势关系: = 

从以上三式解得 Q1′= Q3′=  ,Q2′=  ,这样系统的储能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖学员思考〗图7-23展示的过程中,始末状态的电容器储能是否一样?(答:不一样;在相互充电的过程中,导线消耗的焦耳热已不可忽略。)

☆第七部分完☆

查看答案和解析>>

高考真题

1.【解析】对A选项,静止的导线上的稳恒电流附近产生稳定的磁场,通过旁边静止的线圈不会产生感应电流,A被否定;稳恒电流周围的稳定磁场是非匀强磁场,运动的线圈可能会产生感应电流,B符合事实;静止的磁铁周围存在稳定的磁场,旁边运动的导体棒会产生感应电动势,C符合;运动的导线上的稳恒电流周围产生运动的磁场,即周围磁场变化,在旁边的线圈中产生感应电流,D符合。

【答案】A

2.【解析】本题考查右手定则的应用。根据右手定则,可判断PQ作为电源,Q端电势高,在PQcd回路中,电流为逆时针方向,即流过R的电流为由c到d,在电阻r的回路中,电流为顺时针方向,即流过r的电流为由b到a。当然也可以用楞次定律,通过回路的磁通量的变化判断电流方向.所以选项B正确

【答案】B

3.【解析】如图所示,设观察方向为面向北方,左西右东,则地磁场方向平行赤道表面向北,

若飞机由东向西飞行时,由右手定则可判断出电动势方向为由上

向下,若飞机由西向东飞行时,由右手定则可判断出电动势方向

为由下向上,A对B错;沿着经过地磁极的那条经线运动时,速

度方向平行于磁场,金属杆中一定没有感应电动势,C错D对。

【答案】AD

4.【解析】在释放的瞬间,速度为零,不受安培力的作用,只受到重力,A对。由右手定则可得,电流的方向从b到a,B错。当速度为时,产生的电动势为,受到的安培力为,计算可得,C对。在运动的过程中,是弹簧的弹性势能、重力势能和内能的转化,D错。

【答案】AC

5.【解析】在x=R左侧,设导体棒与圆的交点和圆心的连线与x轴正方向成θ角,则导体棒切割有效长度L=2Rsinθ,电动势与有效长度成正比,故在x=R左侧,电动势与x的关系为正弦图像关系,由对称性可知在x=R右侧与左侧的图像对称。

【答案】A

  6.【解析】考查自感现象。电键K闭合时,电感L1和L2的电流均等于三个灯泡的电流,断开电键K的瞬间,电感上的电流i突然减小,三个灯泡均处于回路中,故b、c灯泡由电流i逐渐减小,B、C均错,D对;原来每个电感线圈产生感应电动势均加载于灯泡a上,故灯泡a先变亮,然后逐渐变暗,A对。本题涉及到自感现象中的“亮一下”现象,平时要注意透彻理解。

【答案】AD.

7.【解析】该题利用导体在磁场中的切割模型综合考查法拉第电磁感应定律、欧姆定律、物体平衡、牛顿第二定律和变速直线运动规律;导体从静止开始又变加速到匀加速,又由匀加速到匀速直至完成全过程,环环相扣,逐步深入,循序渐进,无不渗透着经典物理的科学思想和方法.

(1)体棒ab从A处下落时的有效切割长度为r,由法拉第电磁感应定律得:

E1Brv1,此时等效电路的电阻为R总1==4R,所以I1==,故安培力F1=BI1L1=,由牛顿第二定律得mg-F1=ma,所以a=g-,

(2)有效切割长度为2r,所以感应电动势为E2=2Brv,此时等效电路的电阻为R总2==3R,所以I2==,故安培力为F2=BI2L2=,因棒中电流大小始终不变,也就是速度不变,所以棒受力平衡,即mg=,v=,在无磁场区域棒做匀加速直线运动,由匀变速直线运动规律v2-v22=2gh,所以h=-,得I22=I2=,故P2=I222R2==,

(3)由牛顿第二定律F+mg-=ma,所以F=ma-mg+

【答案】(1) a=g-   (2)   (3) F=ma-mg+

8.(1)a和b不受安培力作用,由机械能守恒可知

(2)设导体棒刚进入无磁场区域时的速度为,刚离开无磁场区域时的速度为

由能量守恒得:在磁场区域中,

在无磁场区域中,

解得:

(3)在无磁场区域,根据匀变速直线运动规律,且平均速度,有磁场区域,棒a受到的合力

感应电动势  ,感应电流,解得

根据牛顿第二定律,在t到时间内

解得

【答案】(1)    

(2)      

 (3)

9.【解析】(1)改变电流方向,磁通量变化量为原来磁通量的两倍,即2BS,代入公式计算得B=,由法拉第电磁感应定律可知电动势的平均值ε=

(2)根据数据可得B与I成正比,比例常数约为0.00125,故B=kI(或0.00125I)

(3)为了得到平均电动势的准确值,时间要尽量小,由B的计算值可看出与N和S相关联,故选择A、B。

【答案】(1)             

(2)0.00125I(或kI)      

(3)A,B

10.【解析】正确分析线框的受力情况和运动情况是解决问题的关键

(1)cd边刚进入磁场时,做自由落体运动,线框速度v=

所以线框中产生的感应电动势E=BLv=BL

(2)此时线框中电流   I=由分压原理可得,cd两点间的电势差U=I()=

(3)安培力     F=BIL=   根据牛顿第二定律mg-F=ma,由a=0

解得下落高度满足    h=

【答案】(1)E=BLv=BL  (2)U=I()=   (3)

11.【解析】导体棒所受的安培力为:F=BIl………………① 

由题意可知,该力的大小不变,棒做匀减速运动,因此在棒的速度从v0减小到v1的过程中,平均速度为:……………………②  

当棒的速度为v时,感应电动势的大小为:E=Blv………………③  

棒中的平均感应电动势为:………………④  

综合②④式可得:………………⑤   

导体棒中消耗的热功率为:………………⑥   

负载电阻上消耗的热功率为:…………⑦   

由以上三式可得:…………⑧   

  【答案】(1)    (2)

12.【解析】(1)由于列车速度与磁场平移速度不同,导致穿过金属框的磁通量发生变化,由于电磁感应,金属框中会产生感应电流,该电流受到的安培力即为驱动力。                                             

(2)为使列车获得最大驱动力,MN、PQ应位于磁场中磁感应强度同为最大值且反向的地方,这会使得金属框所围面积的磁通量变化率最大,导致框中电流最强,也会使得金属框长边中电流受到的安培力最大。因此,d应为的奇数倍,即

     或       ()①

(3)由于满足第(2)问条件:则MN、PQ边所在处的磁感应强度大小均为B0且方向总相反,经短暂的时间,磁场沿Ox方向平移的距离为,同时,金属框沿Ox方向移动的距离为。  因为v0>V,所以在时间内MN边扫过磁场的面积

    在此时间内,MN边左侧穿过S的磁通移进金属框而引起框内磁通量变化

            

    同理,该时间内,PQ边左侧移出金属框的磁通引起框内磁通量变化

           

    故在内金属框所围面积的磁通量变化         

根据法拉第电磁感应定律,金属框中的感应电动势大小          

 根据闭合电路欧姆定律             

根据安培力公式,MN边所受的安培力   PQ边所受的安培力    

 根据左手定则,MN、PQ边所受的安培力方向相同,此时列车驱动力的大小

         联立解得     

【答案】(1)  电流受到的安培力即为驱动力   (2)   (3)

名校试题

1.【解析】若保持电键闭合,磁通量不变,感应电流消失,所以铝环跳起到某一高度后将回落;正、负极对调,同样磁通量增加,由楞次定律,铝环向上跳起.

【答案】CD

2.【解析】 是楞次定律可以判断选项AC正确                    

【答案】AC

3.【解析】橡胶盘A在加速转动时,产生的磁场在不断增加,穿过B的磁通量不断增加,根据楞次定律可知B正确。

【答案】B

4.【解析】矩形线框向上进入匀强磁场时,受到向下的重力和磁场力,致使速度减小,所

以v1>v2,A正确;进入磁场后上升阶段从位置2到位置3,无磁场力,重力做负功,所以v2>v3,B错误;从位置2上升至最高点后再返回至位置2,无磁场力,重力做功为零,所以v2=v4,C正确;下落离开磁场的过程中,受到向下的重力和向上的磁场力,两个力大小无法确定,所以v4与v5无法比较,D错误。

【答案】AC

5.【解析】当拉力恒定时,                       

 

最终以的速度做匀速运动,则,代入的表达式中得

当功率恒定时,

最终以的速度做匀速运动,则

代入的表达式中得

【答案】C

6.【解析】对棒受力分析如图所示,从能的转化与守恒角度出发,可推知外力F克服棒所受的摩擦力做功直接将其他形式的能转化为内能,而F克服安培阻力做的功将其他形式的能转化为电能,其功率为P=(F-f)Va,故感应电流做功的 功率也为,C项正确.本题易错选D,实际上它是回路的总电能的一部分。在棒上通过克服做功转化为棒与轨道的内能,功率.这时棒与相当于电动机通过感应电流而运动,把电能通过克服做功转化为内能.电能的另一部分,由电流的热效应转化为电路的内能,电能的另一部分,由电流的热效应转化为电路的内能,其功率为感应电流做功的总功率减去棒上输出的功率,即,故D项所指正是这部分功率而非感应电流做功的总功率.

【答案】C

7.【解析】⑴匀速时,拉力与安培力平衡,F=BIL

    得:                        

⑵金属棒a切割磁感线,产生的电动势E=BLv

    回路电流  联立得:

⑶平衡时,棒和圆心的连线与竖直方向的夹角为θ,

        得:θ=60°

【答案】(1)   (2)    (3)

8.【解析】(1)设ab棒离开磁场边界前做匀速运动的速度为v,产生的电动势为E = BLv…

电路中电流 I = ……………对ab棒,由平衡条件得 mg-BIL = 0…

解得 v =

(2) 由能量守恒定律:mg(d0 + d) = E + mv2

解得

(3)设棒刚进入磁场时的速度为v0,由mgd0 = mv02,得v0 =

棒在磁场中匀速时速度为v = ,则

1 当v0=v,即d0 = 时,棒进入磁场后做匀速直线运 

2 当v0 < v,即d0 <时,棒进入磁场后做先加速后匀速直线运动

3 当v0>v,即d0时,棒进入磁场后做先减速后匀速直线运动

【答案】(1) (2)  (3)

9.【解析】(1)匀速下降时,金属杆匀速上升,回路中产生的感应电动势为:

整体有:

由以上式子解得:

(2)由(1)得:                       

图象可知:

所以解得:

【答案】(1)     (2)

10.【解析】(1)当金属棒匀速下滑时速度最大,设最大速度为vm,达到最大时则有

mgsinθ=F              F=ILB

                    其中   R=6R                                         所以      mgsinθ=        解得最大速度                                    

(2)R2上消耗的功率       其中                                        

     又                                          

解以上方程组可得

时,R2消耗的功率最大          最大功率 

 【答案】(1)  (2)          

11.【解析】(1)在t=0至t=4s内,金属棒PQ保持静止,磁场变化导致电路中产生感应电动势.电路为r与R并联,再与RL串联,电路的总电阻

=5Ω                     ①

此时感应电动势

=0.5×2×0.5V=0.5V          ②

通过小灯泡的电流为:=0.1A            ③

(2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R与RL并联,再与r串联,此时电路的总电阻

=2+Ω=Ω       ④

由于灯泡中电流不变,所以灯泡的电流IL=0.1A,则流过棒的电流为

0.3A             ⑤

电动势                        ⑥

解得棒PQ在磁场区域中v=1m/s                                 

【答案】(1)    0.1A       (2)运动的速度大小v=1m/s

12.【解析】(1)ab杆向右运动时,ab杆中产生的感应电动势方向为a→b,大小为E=BLv1,…   耐杆中的感应电流方向为d→c.cd杆受到的安培力方向水平向右

    安培力大小为①   

解①、③两式,ab杆匀速运动的速度为

(2)ab杆所受拉力F=

(3)设cd杆以v2速度向下运动h过程中,ab杆匀速运动了s距离

    整个回路中产生的焦耳热等于克服安培力所做的功

   

【答案】(1)   (2)  (3)

 13.【解析】导轨在外力作用下向左加速运动,由于切割磁感线,在回路中要产生感应电流,导轨的bc边及金属棒PQ均要受到安培力作用PQ棒受到的支持力要随电流的变化而变化,导轨受到PQ棒的摩擦力也要变化,因此导轨的加速度要发生改变.导轨向左切割磁感线时,感应电动势   E=BLv    ①  

感应电流       ②  

    ③       导轨受到向右的安培力F 1= BIL,金属棒PQ受到向上的安培力F2= BIL,导轨受到PQ棒对它的摩擦力, 

根据牛顿第二定律,有

        ④   

(1)当刚拉动导轨时,v=0,由③④式可知I=0时有最大加速度am,即

m/s2  

(2)随着导轨速度v增大感应电流I增大而加速度a减小,当a=0时,导轨有最大速度vm,从④式可得

 

A代入③式,得             

m/s  

20080523

t=t1时,v达到最大,I达到2.5 A,电流I随时间t的变化图线如图所示所示.  

【答案】(1)  

m/s2  

(2)m/s    (3)如图所示26所示

20080523

(2)棒做加速度逐渐减小的变加速运动,棒到达底端时速度最大,由能量守恒定律得

   解得   m/s 

(3)当棒的速度为v时,感应电动势  E=Bdv 

感应电流   棒所受安培力F=BId   

当棒的速度为v=2 m/s时,F=1 N     由牛顿第二定律得 

解得棒的加速度  m/s2 

【答案】(1)由b指向a;(2)m/s;  (3)m/s2

考点预测题

1.【解析】铜环经过位置1时,有磁通量变化产生感应电流受磁场力方向向上,阻碍磁通量的增加,所以,; 经过位置2时,环中磁通量最大,磁通量变化率为零,不产生感应电流,只受重力mg,故a2 =g;铜环在位置3时速度大于位置1时的速度,所以经过位置3时磁通量变化率比位置1时大,产生的感应电流也大,受到的磁场力也大,且该磁场力仍然是阻碍环与磁场的相对运动,方向向上,所以a3< a1<g 。

 【答案】A、B、D.

 2.【解析】由于环中感应电流所受安培力的方向既跟直流电流产生的磁场方向垂直,又跟环中感应电流方向垂直,环各部分所受的安培力的合力应在竖直平面上,环只可能的竖直平面内运动,故转动不可能。如左右平动,不影响环垂直磁场的净面积,也不影响穿过圆环的净磁通。如向上平动,使净面积增加,净磁通增加,故向上平动不可能。如向下平动,使净面积减小,净磁通减少,满足“效果阻碍原因”。显然不论直导线中电流方向如何,只要电流强度增大,最终环的机械运动都一样,即向下平动。反之如电流强度减小,则向上平动。

【答案】A.

2.法拉第电磁感应定律问题

3.【解析】当双刀双掷开关S使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:

                         

由欧姆定律得:            

由上述二式可得:

【答案】

4.【解析】(1)设线圈向右移动一距离ΔS,则通过线圈的磁通量变化为:,而所需时间为,  

根据法拉第电磁感应定律可感应电动势力为V.

(2)根据欧姆定律可得感应电流A,     

电功率P=IE=W          

【答案】(1) V   (2)W

5.【解析】0-1s内B垂直纸面向里均匀增大,则由楞次定律及法拉第电磁感应定律可得线圈中产生恒定的感应电流,方向为逆时针方向,排除A、C选项;2s-3s内,B垂直纸面向外均匀增大,同理可得线圈中产生的感应电流方向为顺时针方向,排除B选项,D正确。

【答案】D

6.【解析】从正方形线框下边开始进入到下边完全进入过程中,线框切割磁感线的有效长度逐渐增大,所以感应电流也逐渐拉增大,A项错误;从正方形线框下边完全进入至下边刚穿出磁场边界时,切割磁感线有效长度不变,故感应电流不变,B项错;当正方形线框下边离开磁场,上边未进入磁场的过程比正方形线框上边进入磁场过程中,磁通量减少的稍慢,故这两个过程中感应电动势不相等,感应电流也不相等,D项错,故正确选项为C。

     【答案】C

7.【解析】当滑过时,其等效电路如图所示.这时的有效切割长度为

电阻:   

总电流:

由并联分流关系可知:

导线中的电流方向由.                      

【答案】方向由.

8.【解析】(1)棒滑过圆环直径OO′ 的瞬时,MN中的电动势

E1=B2a v=0.2×0.8×5=0.8V          

等效电路如图所示,流过