解:去分母.得 2x+x-1 解这个方程.得 x=-3 经检验 x=-3是原方程的根.所以原方程的根是x=-3 查看更多

 

题目列表(包括答案和解析)

先阅读解方程
x-1
x
-
1-x
x+1
=
5x-5
2x+2
的过程,然后回答问题:
将方程整理为
x-1
x
+
x-1
x+1
=
5(x-1)
2(x+1)
(第一步)
方程两边同时除以(x-1)得
1
x
+
1
x+1
=
5
2(x+1)
(第二步)
去分母,得2(x+1)+2x=5x(第三步)
解这个整式方程,得x=2    (第四步)
上面解题过程中:
(1)第二步变形的依据是
等式的性质
等式的性质

(2)出现错误的是
第二步
第二步

(3)上述解题过程还缺少
检验
检验

(4)本题正确的解为
x=2或x=1
x=2或x=1

查看答案和解析>>

先阅读解方程
x-1
x
-
1-x
x+1
=
5x-5
2x+2
的过程,然后回答问题:
将方程整理为
x-1
x
+
x-1
x+1
=
5(x-1)
2(x+1)
(第一步)
方程两边同时除以(x-1)得
1
x
+
1
x+1
=
5
2(x+1)
(第二步)
去分母,得2(x+1)+2x=5x(第三步)
解这个整式方程,得x=2    (第四步)
上面解题过程中:
(1)第二步变形的依据是______;
(2)出现错误的是______;
(3)上述解题过程还缺少______;
(4)本题正确的解为______.

查看答案和解析>>

先阅读,然后解决问题:

已知:一次函数和反比例函数,求这两个函数图象在同一坐标系内的交点坐标。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解这个方程得:x1=-2  x2=4

经检验,x1=-2 x2=4是原方程的根

当x1=-2,y1=4;x2=4,y2=-2

∴交点坐标为(-2,4)和(4,-2)

问题:

1.在同一直角坐标系内,求反比例函数y=的图象与一次函数y=x+3的图象的交点坐标;

2.判断一次函数y=2x-3的图象与反比例函数y=-的图象在同一直角坐标系内有无交点,说明理由.

 

查看答案和解析>>

先阅读,然后解决问题:

已知:一次函数和反比例函数,求这两个函数图象在同一坐标系内的交点坐标。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解这个方程得:x1=-2  x2=4

经检验,x1=-2 x2=4是原方程的根

当x1=-2,y1=4;x2=4,y2=-2

∴交点坐标为(-2,4)和(4,-2)

问题:

1.在同一直角坐标系内,求反比例函数y=的图象与一次函数y=x+3的图象的交点坐标;

2.判断一次函数y=2x-3的图象与反比例函数y=-的图象在同一直角坐标系内有无交点,说明理由.

 

查看答案和解析>>

先阅读下面解方程
x-1
x
-
1-x
x+1
=
5x-5
2x+2
的过程,然后回答后面的问题.
解:将原方程整理为:
x-1
x
+
x-1
x+1
=
5(x-1)
2(x+1)
(第一步)
方程两边同除以(x-1)得:
1
x
+
1
x+1
=
5
2(x+1)
(第二步)
去分母,得:2(x+1)+2x=5x(第三步)
解这个方程,得:x=2(第四步)
在上面的解题过程中:
(1)第三步变形的依据是
等式的性质
等式的性质

(2)出现错误的一步是
第二步
第二步

(3)上述解题过程缺少的一步是
检验
检验
;写出这个方程的完整的解题过程.

查看答案和解析>>


同步练习册答案